1
|
Liu Y, Chaudhari AS, Picchiotti A, Rebarz M, Kloz M, Přeček M, Andreasson J, Schneider B. Excited-State Mixing in the LOV Domain Proteins: Possible Physics behind the Difference in the Transient Absorption and Transient Stimulated Raman Spectroscopy. J Phys Chem Lett 2025; 16:4072-4080. [PMID: 40237579 DOI: 10.1021/acs.jpclett.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
It remains uncertain whether excited electronic state mixing occurs in the flavin cofactor of the light-oxygen-voltage-sensing (LOV) domain. In this study, we present transient absorption and femtosecond stimulated Raman spectra of both free and EL222 binding flavin mononucleotide (FMN). We observed a change in the shape of the excited-state absorption around 800 nm in the S1 state transient absorption after binding to EL222, alongside a relative intensity increase of the N1-C2 and C2═O2 stretching modes in the S1 state Raman spectra. Based on the previous calculated geometric differences between the ππ* and nπ* states, we propose a probable electronic state mixing in EL222 binding FMN. This mixing is favored by the nonsymmetric hydrogen bonding interaction between the flavin O4 atom and the asparagine residue and fewer hydrogen bonds with the O2 atom in EL222.
Collapse
Affiliation(s)
- Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia
- The Extreme Light infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, CZ-252 41 Dolní Břežany, Czech Republic
- Weihai Kingfull Electronics Co., Ltd., Shuangdao Road 369-3, CN-264204 Weihai, China
| | - Aditya S Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia
| | - Alessandra Picchiotti
- The Extreme Light infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, CZ-252 41 Dolní Břežany, Czech Republic
- Institute for Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| | - Mateusz Rebarz
- The Extreme Light infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, CZ-252 41 Dolní Břežany, Czech Republic
| | - Miroslav Kloz
- The Extreme Light infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, CZ-252 41 Dolní Břežany, Czech Republic
| | - Martin Přeček
- The Extreme Light infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, CZ-252 41 Dolní Břežany, Czech Republic
| | - Jakob Andreasson
- The Extreme Light infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, CZ-252 41 Dolní Břežany, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia
| |
Collapse
|
2
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Chen Z, Kang XW, Zhou Y, Zhou Z, Tang S, Zou S, Wang K, Huang J, Ding B, Zhong D. Dissecting the Ultrafast Stepwise Bidirectional Proton Relay in a Blue-Light Photoreceptor. J Am Chem Soc 2023; 145:3394-3400. [PMID: 36722850 DOI: 10.1021/jacs.2c10206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.
Collapse
Affiliation(s)
- Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States.,School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
5
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
6
|
Tolentino Collado J, Iuliano JN, Pirisi K, Jewlikar S, Adamczyk K, Greetham GM, Towrie M, Tame JRH, Meech SR, Tonge PJ, Lukacs A. Unraveling the Photoactivation Mechanism of a Light-Activated Adenylyl Cyclase Using Ultrafast Spectroscopy Coupled with Unnatural Amino Acid Mutagenesis. ACS Chem Biol 2022; 17:2643-2654. [PMID: 36038143 PMCID: PMC9486806 DOI: 10.1021/acschembio.2c00575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.
Collapse
Affiliation(s)
| | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States
| | - Katalin Pirisi
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti Street 12, Pecs 7624, Hungary
| | - Samruddhi Jewlikar
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States
| | - Katrin Adamczyk
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Jeremy R. H. Tame
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.,
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States,
| | - Andras Lukacs
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti Street 12, Pecs 7624, Hungary,
| |
Collapse
|