1
|
Yang X, Zhang W, Zeng Y, Chong Y, Liu F, Wu Z, Shen H, Li H. Improving Internal Exciton Confinement for Efficient CdZnSeS-Based Blue Quantum Dot Light-Emitting Diodes. Angew Chem Int Ed Engl 2025:e202420421. [PMID: 40255190 DOI: 10.1002/anie.202420421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/22/2025]
Abstract
Quantum-dot light-emitting diodes (QLEDs) are thought to be the base for next-generation display technology. However, the performance of blue-emitting QLEDs still falls behind those of green and red ones, which can be attributed to the energy loss from Auger recombination and the strong coupling of excitons with surface states. Blue quantum dots (QDs) with giant CdZnSeS alloy cores are expected to improve the internal confinement of excitons due to the nonmonotonical energy landscape of their conduction band, while they haven't shown high performance in QLEDs due to insufficient optimization of their shell structures. In this work, giant CdZnSeS alloy cores were synthesized by diffusing Zn atoms into CdSeS cores, so that the core/shell lattice stress was released due to the optimized gradient compositions. As a result, exciton transfer and Auger recombination are both suppressed, leading to a breakthrough external quantum efficiency (EQE) of 24% in blue QLEDs with giant CdZnSeS alloy cores. Compared to the more extensively studied blue quantum dots with CdSeZn alloy cores, blue QLEDs with giant CdZnSeS alloy cores also benefit from the suppressed Fermi level and nonmonotonical energy landscape of the conduction band minimum (CBM), which are crucial for confining the wavefunctions of the excitons. The improved exciton confinement explained the superior performances of giant CdZnSeS alloy cores over CdSeZn cores in blue QLEDs.
Collapse
Affiliation(s)
- Xiaoting Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, P.R. China
| | - Wenjing Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Yicheng Zeng
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, P.R. China
| | - Yihuang Chong
- School of Nanoscience and Materials Engineering, Henan University, North Section of Jinming Avenue, Kaifeng, Henan, 475001, P.R. China
| | - Fangze Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, P.R. China
| | - Zhenghui Wu
- School of Nanoscience and Materials Engineering, Henan University, North Section of Jinming Avenue, Kaifeng, Henan, 475001, P.R. China
| | - Huaibin Shen
- School of Nanoscience and Materials Engineering, Henan University, North Section of Jinming Avenue, Kaifeng, Henan, 475001, P.R. China
| | - Hongbo Li
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, P.R. China
| |
Collapse
|
2
|
Song X, Qin Y, Wang Q, Ning J. Alloyed Zinc Chalcogenide Magic-Sized Nanoclusters and Their Transformation to Alloyed Quantum Dots. Inorg Chem 2024; 63:17100-17107. [PMID: 39231003 DOI: 10.1021/acs.inorgchem.4c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Alloying provides the opportunity to widen the physical and chemical properties of quantum dots (QDs); however, the precise controlled composition of alloyed QDs is still a challenge. In this work, a few quaternary alloyed zinc chalcogenide magic-sized nanoclusters (MSCs) were synthesized using the active chalcogen precursors of tri(dimethylamine)phosphine chalcogen, such as Zn21S4Se3Te4 (MSCs-348), Zn14S4Se4Te7 (MSCs-350), Zn15S1Se4Te6 (MSCs-349), and Zn17S2Se2Te7 (MSCs-355) MSCs. The composition of alloyed zinc chalcogenide MSCs was tuned with the different amounts of added chalcogen precursors. Finally, the produced alloyed zinc chalcogenide MSCs can be used as precursors to synthesize alloyed zinc chalcogenide QDs, and the composition of zinc chalcogenide QDs can be adjusted with different alloyed MSCs. This work provides methods to alloy MSCs with controlled composition, providing efficient precursors for alloyed QDs.
Collapse
Affiliation(s)
- Xuerong Song
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Yue Qin
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Qian Wang
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Jiajia Ning
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| |
Collapse
|
3
|
Xue J, Wang S, Wang Z, Luan C, Li Y, Chen X, Yu K. Pathway of Room-Temperature Formation of CdSeS Magic-Size Clusters from Mixtures of CdSe and CdS Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402121. [PMID: 38634202 DOI: 10.1002/smll.202402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The synthetic application of prenucleation-stage samples of colloidal semiconductor quantum dots (QDs) is in its infancy. It is shown that when two prenucleation-stage samples of binary CdSe and CdS are mixed, ternary CdSeS magic-size clusters (MSCs) grow at room temperature in dispersion. As the amount of the CdS sample increases, the optical absorption of the CdSeS MSCs blueshifts from ≈380 to ≈360 nm. It is proposed that the cluster in the CdSe sample reacts with the CdS monomer from the CdS sample. The monomer substitution reaction of CdSe by CdS can proceed continuously; thus, CdSeS MSCs with tunable compositions are obtained. The present study provides compelling evidence that clusters formed in the prenucleation stage of QDs. The clusters are precursor compounds (PCs) of MSCs, transforming at room temperature with the thermoneutrality principle of isodesmic reactions. The nucleation and growth of QDs follows a multi-step non-classical instead of one-step classical nucleation model.
Collapse
Affiliation(s)
- Jiawei Xue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
4
|
Zhang J, Liu Y, Liu M, Wang Z, Qi T, Zhang M, Shi H, Song J. Carboxylic acid isomer-directed synthesis of CdS nanocluster isomers. Chem Sci 2024; 15:10585-10591. [PMID: 38994410 PMCID: PMC11234825 DOI: 10.1039/d4sc01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Selective synthesis of nanocluster (NC) isomers with tailored structures holds significant importance for enhancing their applications. Here, we develop an effective strategy for the selective synthesis of CdS NC isomers through the judicious choice of a pair of carboxylic acid isomer additives. Specifically, CdS NC-312 and NC-323 (denoted by their UV-vis absorption peak position) could be selectively produced by introducing a conventional mixture of Cd and S precursors, with the addition of 2-methylbutyric acid (2-MA) and 3-methylbutyric acid (3-MA), respectively. The synthesized NC isomers demonstrated a precise isomeric relationship, sharing both the isomeric inorganic core and organic surface. Alternatively, the as-synthesized NCs were interconvertible by re-adding the acid isomers. The density functional theory calculations further support that 2-MA and 3-MA have specific selectivity for producing CdS NC isomers by interfacial tuning. Finally, the generality of this methodology was also evidenced with applications in other CdS NC synthetic systems. This study unveils the intriguing correlation between additive structures and the configuration of NCs, providing a foundation for the selective synthesis of NC isomers.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Yu Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Zhenzhu Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Mingming Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Hao Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
5
|
Hu J, Yang Y, Shen Q, Wang S, Chen X, Luan C, Yu K. Room-Temperature Formation of CdTeSe Magic-Size Clusters from Oleate-Capped CdTe Precursor Compounds via CdSe Monomer Substitution. Inorg Chem 2024; 63:11487-11493. [PMID: 38833379 DOI: 10.1021/acs.inorgchem.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We report the first room-temperature synthesis of ternary CdTeSe magic-size clusters (MSCs) that have mainly the surface ligand oleate (OA). The MSCs display sharp optical absorption peaking at ∼399 nm and are thus referred to as MSC-399. They are made from prenucleation-stage samples of binary CdTe and CdSe, which are prepared by two reactions in 1-octadecene (ODE) of cadmium oleate (Cd(OA)2) and tri-n-octylphosphine chalcogenide (ETOP, E = Te and Se) at 25 °C for 120 min and 80 °C for 15 min, respectively. When the two binary samples are mixed at room temperature and dispersed in a mixture of toluene (Tol) and octylamine (OTA), the CdTeSe MSC-399 develops. Also, when the CdSe sample is added to CdTe MSC-371 in a dispersion, the transformation from CdTe MSC-371 to CdTeSe MSC-399 is seen. We propose that the MSCs develop from their precursor compounds (PCs) that are relatively transparent in optical absorption, such as CdTeSe MSC-399 from CdTeSe PC-399 and CdTe MSC-371 from CdTe PC-371. The formation of CdTeSe PC-399 undergoes monomer substitution and not anion exchange, which is the reaction of CdTe PC-371 and the CdSe monomer to produce CdTeSe PC-399 and the CdTe monomer. Our study provides evidence of monomer substitution for the transformation from binary CdTe to ternary CdTeSe PCs.
Collapse
Affiliation(s)
- Jie Hu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
6
|
Chen Q, Zhang Y, Chen S, Liu Y, Zhang C, Zhang M, Yu K. Surface-Ligand Tuned Reversible Transformations in Aqueous Environments Between CdSe Magic-Size Clusters and Their Precursor Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304277. [PMID: 37806760 DOI: 10.1002/smll.202304277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
That magic-size clusters (MSCs) have their counterpart precursor compounds (PCs) has not been generally accepted by expertise circles. Here, experimental evidence to support this new concept is presented. With aqueous-phase CdSe MSCs as a model system, it is shown that when the MSCs are dispersed in water containing a certain amount of L-cysteine (Cys), the MSCs disappear slowly. Upon the addition of CdCl2 , the MSCs recover. It is proposed that after dispersing, the MSCs transform to their quasi-isomeric, non-absorbing PCs upon Cys addition. In the presence of CdCl2 , the PCs transform back to the MSCs due to Cys elimination. The surface ligand Cys of the MSCs plays a significant role in the reversible transformations. The present study provides compelling evidence that absorbing MSCs have their non-absorbing PCs. The study findings suggest that the transformation between two MSCs that display absorption spectral shifts in a stepwise pattern is assisted by their PCs.
Collapse
Affiliation(s)
- Qingyuan Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuo Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuehui Liu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunchun Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
7
|
Chen S, Zhang Y, Chen Q, Zhang C, Zhang M, Yu K. Precursor Compound-Assisted Formation of CdS Magic-Size Clusters in Aqueous Solutions. Inorg Chem 2023; 62:18290-18298. [PMID: 37883791 DOI: 10.1021/acs.inorgchem.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Investigations of the formation pathway of semiconductor magic-size clusters (MSCs) in aqueous solutions are quite limited. Here, we present our understanding about a precursor compound (PC)-assisted formation pathway of aqueous-phase CdS MSCs exhibiting a characteristic absorption peak at about 360 nm (MSC-360). The reaction uses CdCl2 as the Cd source and thioglycolic acid (TGA) as both the S source and ligand in alkaline aqueous solutions. The mixture remains absorption featureless upon incubation at room temperature but with MSC-360 absorption observed upon adding butylamine. The longer the incubation period of the aqueous solution, the more MSC-360 forms after adding butylamine. We propose that Cd-TGA complexes form first, in which the TGA moieties then decompose partially to form PC of MSC-360 (PC-360) that cannot be observed in the optical absorption spectrum. The resulting PC-360 transforms to MSC-360 via quasi-isomerization in the presence of butylamine. The present study provides an in-depth understanding about the formation of aqueous-phase MSCs.
Collapse
Affiliation(s)
- Shuo Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yu Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingyuan Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Yang Y, Shen Q, Zhang C, Rowell N, Zhang M, Chen X, Luan C, Yu K. Direct and Indirect Pathways of CdTeSe Magic-Size Cluster Isomerization Induced by Surface Ligands at Room Temperature. ACS CENTRAL SCIENCE 2023; 9:519-530. [PMID: 36968545 PMCID: PMC10037450 DOI: 10.1021/acscentsci.2c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 06/18/2023]
Abstract
The field of isomerization reactions for colloidal semiconductor magic-size clusters (MSCs) remains largely unexplored. Here, we show that MSCs isomerize via two fundamental pathways that are regulated by the acidity and amount of an incoming ligand, with CdTeSe as the model system. When MSC-399 isomerizes to MSC-422 at room temperature, the peak red-shift from 399 to 422 nm is continuous (pathway 1) and/or stepwise (pathway 2) as monitored in situ and in real time by optical absorption spectroscopy. We propose that pathway 1 is direct, with intracluster configuration changes and a relatively large energy barrier. Pathway 2 is indirect, assisted by the MSC precursor compounds (PCs), from MSC-399 to PC-399 to PC-422 to MSC-422. Pathway 1 is activated when PC-422 to MSC-422 is suppressed. Our findings unambiguously suggest that when a change occurs directly on a nanospecies, its absorption peak continuously shifts. The present study provides an in-depth understanding of the transformative behavior of MSCs via ligand-induced isomerization upon external chemical stimuli.
Collapse
Affiliation(s)
- Yusha Yang
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Chunchun Zhang
- Analytical
& Testing Center, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Nelson Rowell
- Metrology
Research Centre, National Research Council
Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Meng Zhang
- Institute
of Atomic and Molecular Physics, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- Laboratory
of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
- Institute
of Atomic and Molecular Physics, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
9
|
He L, Luan C, Liu S, Chen M, Rowell N, Wang Z, Li Y, Zhang C, Lu J, Zhang M, Liang B, Yu K. Transformations of Magic-Size Clusters via Precursor Compound Cation Exchange at Room Temperature. J Am Chem Soc 2022; 144:19060-19069. [PMID: 36215103 DOI: 10.1021/jacs.2c07972] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transformation of colloidal semiconductor magic-size clusters (MSCs) from zinc to cadmium chalcogenide (ZnE to CdE) at low temperatures has received scant attention. Here, we report the first room-temperature evolution of CdE MSCs from ZnE samples and our interpretation of the transformation pathway. We show that when prenucleation stage samples of ZnE are mixed with cadmium oleate (Cd(OA)2), CdE MSCs evolve; without this mixing, ZnE MSCs develop. When ZnE MSCs and Cd(OA)2 are mixed, CdE MSCs also form. We propose that Cd(OA)2 reacts with the precursor compounds (PCs) of the ZnE MSCs but not directly with the ZnE MSCs. The cation exchange reaction transforms the ZnE PCs into CdE PCs, from which CdE MSCs develop. Our findings suggest that in reactions that lead to the production of binary ME quantum dots, the E precursor dominates the formation of binary ME PCs (M = Zn or Cd) to have similar stoichiometry. The present study provides a much more profound view of the formation and transformation mechanisms of the ME PCs.
Collapse
Affiliation(s)
- Li He
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shangpu Liu
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Meng Chen
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Ze Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jiao Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Bin Liang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
10
|
Luan C, Shen Q, Rowell N, Zhang M, Chen X, Huang W, Yu K. A Real‐Time In‐situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic‐size Clusters at Room Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chaoran Luan
- Sichuan University Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital CHINA
| | - Qiu Shen
- Sichuan University National Engineering Research Center for Biomaterials, College of Biomedical Engineering CHINA
| | - Nelson Rowell
- National Research Council Canada Metrology Research Centre CANADA
| | - Meng Zhang
- Sichuan University Institute of Atomic and Molecular Physics CHINA
| | - Xiaoqin Chen
- Sichuan University National Engineering Research Center for Biomaterials, College of Biomedical Engineering CHINA
| | - Wen Huang
- Sichuan University Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital CHINA
| | - Kui Yu
- Sichuan University National Engineering Research Center for Biomaterials No. 24, South Section, First Ring Road, Chengdu 610065 Chengdu CHINA
| |
Collapse
|
11
|
Luan C, Shen Q, Rowell N, Zhang M, Chen X, Huang W, Yu K. A Real-Time In Situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic-Size Clusters at Room Temperature. Angew Chem Int Ed Engl 2022; 61:e202205784. [PMID: 35794715 DOI: 10.1002/anie.202205784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 02/05/2023]
Abstract
The transformations of colloidal semiconductor magic-size clusters (MSCs) are expected to occur with only discrete, step-wise redshifts in optical absorption. Here, we challenge this assumption presenting a novel, conceptually different transformation, for which the redshift is continuous. In the room-temperature transformation from CdTe MSC-448 to MSC-488 (designated by the peak wavelengths in nanometer), the redshift of absorption monitored in situ displays distinctly continuous and/or step-wise behavior. Based on conclusive evidence provided by real-time experiments, the former transformation is apparently direct and intra-cluster with a relatively large energy barrier. The latter transformation is indirect and assisted by MSC precursor compounds (PCs). The former transformation follows the latter often, being predominant at a relatively high temperature. The present findings encourage a reconsideration of the absorption redshift reported previously for transformations of binary II-VI MSCs, together with the pathway associated without the increase of cluster mass.
Collapse
Affiliation(s)
- Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Qiu Shen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ontario, K1A 0R6, Canada
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaoqin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
12
|
Zhang Y, Cao Z, Zhang H, Luan C, Chen X, Li Y, Yang Y, Li Y, Zeng J, Yu K. Room-Temperature Evolution of Ternary CdTeS Magic-Size Clusters Exhibiting Sharp Absorption Peaking at 381 nm. JOURNAL OF PHYSICAL CHEMISTRY LETTERS 2022; 13:4941-4948. [PMID: 35635487 DOI: 10.1021/acs.jpclett.2c00884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Zhaopeng Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Hai Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Yan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| |
Collapse
|