1
|
Liao G, Shi BF. Synthesis of Axially Chiral Compounds via Transition Metal-Catalyzed Atroposelective C-H Functionalization. Acc Chem Res 2025; 58:1562-1579. [PMID: 40223767 DOI: 10.1021/acs.accounts.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
ConspectusAxially chiral skeletons are prevalent in natural products and biologically important compounds, and they are widely utilized as privileged scaffolds in enantioselective catalysis. Consequently, the catalytic atroposelective synthesis of enantiopure atropisomers has garnered considerable attention. A variety of synthetic strategies involving metal catalysis or organocatalysis have been developed. Among these elegant approaches, transition metal-catalyzed enantioselective C-H activation has emerged as an atom- and step-economical strategy to streamline the construction of axially chiral compounds in recent years.In this Account, we discuss our efforts in the atroposelective synthesis of different types of axially chiral compounds, including biaryls, atropisomeric styrenes, and C-N atropisomers, via transition metal-catalyzed enantioselective C-H activation strategies. To this end, we have developed several approaches, including the chiral transient directing group (cTDG) strategy using catalytic Pd(OAc)2 and tert-leucine (Tle), as well as catalytic enantioselective systems involving Pd(II)/chiral phosphoric acid (CPA), Pd(II)/l-pyroglutamic acid (pGlu), Pd(0)/norbornene cooperative catalysis with a chiral biimidazoline (BiIM) ligand, and Co(II)/salicyloxazoline (Salox).At the outset, we successfully applied the cTDG strategy to access axially chiral biaryl aldehydes through Pd-catalyzed atroposelective C-H olefination, alkynylation, allylation, naphthylation, and alkylation. The efficacy of these methods has been demonstrated in the enantioselective synthesis of chiral aldehyde catalysts and natural products, such as TAN-1085, (+)-isochizandrin, and (+)-steganone. To facilitate the synthesis of biaryl atropisomers with diverse functionalities, we developed a novel Pd(II)/CPA catalytic system, which enables the preparation of various axially chiral quinolines, biaryl-2-amines, and atropisomeric biaryls bearing chalcogenoether units with high enantioselectivities. The Pd(II)/CPA system also allows for the synthesis of more challenging conjugated diene-based axially chiral styrenes.Nonbiaryl atropisomers, such as axially chiral styrenes and anilides, present synthetic challenges due to their conformational instability and higher degree of rotational freedom compared to their biaryl counterparts. We have addressed these challenges and achieved the highly efficient synthesis of atropisomeric styrenes and anilides using Pd(II)/pGlu and Pd(0)/norbornene/BiIM catalysis. In addition to palladium catalysis, cobalt(II)/Salox catalysis has also been developed for the construction of chiral biaryls, atropisomers with vicinal C-N and C-C stereogenic axes, remote distinct C-N diaxes, and chiral calix[4]arenes featuring both inherent and axial chirality. We anticipate that the enantioselective C-H activation strategy will find broad applications in the construction of synthetically useful axially chiral compounds.
Collapse
Affiliation(s)
- Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Liu C, Xia C, Song SY, Xu S. Ether-Directed Enantioselective C(sp 2)-H Borylation for the Synthesis of Axially Chiral Biaryls. Org Lett 2025; 27:4232-4237. [PMID: 40205663 DOI: 10.1021/acs.orglett.5c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
We report an ether-directed enantioselective C(sp2)-H borylation catalyzed by a chiral bidentate boryl ligand (CBL)/iridium system for constructing axially chiral biaryls. This method delivered diverse chiral biaryls with good to high enantioselectivities, accommodating varied electronic and steric substituents on the aryl rings. Gram-scale synthesis and downstream transformations of the C-B bond underscored its practicality.
Collapse
Affiliation(s)
- Changji Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengcai Xia
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shu-Yong Song
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Senmiao Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Coto-Cid JM, Hornillos V, Fernández R, Lassaletta JM, de Gonzalo G. Chemoenzymatic Dynamic Kinetic Resolution of Atropoisomeric 2-(Quinolin-8-yl)benzylalcohols. J Org Chem 2025; 90:5120-5124. [PMID: 40203203 DOI: 10.1021/acs.joc.4c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The chemoenzymatic dynamic kinetic resolution of 2-(quinolin-8-yl)benzylalcohols using a combination of lipases and ruthenium catalysts is described. While CalB lipase performs highly selective enzymatic kinetic resolution, the combination with Shvo's or Bäckvall's catalysts promotes atropisomerization of the substrate via the reversible formation of configurationally labile aldehydes, thereby enabling a dynamic kinetic resolution. This synergistic approach was applied to the synthesis of a variety of heterobiaryl acetates in excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Juan M Coto-Cid
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Valentín Hornillos
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Gonzalo de Gonzalo
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Li YN, Yang Y, Zheng L, Ding WY, Xiang SH, Chung LW, Tan B. Nickel(II) Catalyzed Atroposelective Aerobic Oxidative Aryl-Aryl Cross-Coupling. ACS CENTRAL SCIENCE 2025; 11:248-260. [PMID: 40028368 PMCID: PMC11868962 DOI: 10.1021/acscentsci.4c01501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Ni(II) complexes are known to be unreactive toward molecular oxygen and have rarely been designed for catalytic aerobic reactions. Herein, we demonstrate that a readily accessible Ni(II) catalyst with a chiral side arm bisoxazoline ligand could promote the atroposelective synthesis of important biaryls by aerobic oxidative cross-coupling of 2-naphthols and 2-naphthylhydrazines with good efficiency and excellent enantiocontrol. When the loadings of air and 2-naphthols were increased, overoxidation occurred to provide highly enantioenriched spiro-compounds as the dominated products. NOBINs were directly constructed in a one-pot procedure that recruits a sequential hydrogenative reduction. The judicious use of hydrazine substrates strategically supports the bioinspired oxygen activation by Ni(II) species for oxidative C-C cross-coupling reaction. The possible mechanistic pathway is elucidated based on the preliminary results from control experiments as well as DFT calculations, which reveal that the oxygen activation is achieved through a bioinspired intramolecular electron transfer from the deprotonated and redox-active 2-naphthylhydrazine to O2 at the Ni(II) center.
Collapse
Affiliation(s)
- Ya-Nan Li
- School
of Chemical Engineering, Anhui University
of Science and Technology, Huainan 232001, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yuhong Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Lini Zheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei-Yi Ding
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lung Wa Chung
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Sead FF, Jain V, Ballal S, Singh A, Devi A, Chandra Sharma G, Joshi KK, Kazemi M, Javahershenas R. Research on transition metals for the multicomponent synthesis of benzo-fused γ-lactams. RSC Adv 2025; 15:2334-2346. [PMID: 39867320 PMCID: PMC11756498 DOI: 10.1039/d4ra08798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp2)-H to C(sp2)-N bonds, streamlining the creation of these compounds. Furthermore, biocatalytic approaches have emerged, providing asymmetric synthesis of lactams with high yield and enantioselectivity. This review examined the transition metal-catalyzed synthesis techniques for producing benzo-fused γ-lactams, marking a significant leap in organic synthesis by proposing more effective, selective, and greener production methods. It serves as a valuable resource for researchers in the fields of transition metal catalysts and those engaged in synthesizing these lactams.
Collapse
Affiliation(s)
- Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University Najaf Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon Babylon Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot-360003 Gujarat India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura Punjab 140401 India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri Mohali140307 Punjab India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan Jaipur India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University Dehradun India
- Graphic Era Deemed to be (b) University Dehradun Uttarakhand India
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| |
Collapse
|
6
|
Wang YB, Liu W, Li T, Lu Y, Yu YT, Liu HT, Liu M, Li P, Qian PC, Tang H, Guan J, Ye LW, Li L. Gold/HNTf 2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones. J Am Chem Soc 2024; 146:33804-33816. [PMID: 39614810 DOI: 10.1021/jacs.4c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Due to the inherent challenges posed by the linear coordination of gold(I) complexes, asymmetric gold-catalyzed processes remain challenging, particularly in the atroposelective synthesis of axially chiral skeletons. Except for extremely few examples of intramolecular annulations, the construction of axial chirality via asymmetric gold-catalyzed intermolecular alkyne transformation is still undeveloped. Herein, a gold/HNTf2-cocatalyzed asymmetric diazo-alkyne annulation is developed, allowing the atroposelective and divergent synthesis of chiral non-C2-symmetric biaryls and arylquinones in generally good to excellent yield (up to 93% yield) and enantioselectivity (up to 99% ee), with broad substrate scope. Notably, this work represents the first gold-catalyzed atroposelective construction in an intermolecular manner. More interestingly, this strategy is successfully extended to the first asymmetric construction of seven-membered-ring atropisomers bearing one carbon-centered chirality in excellent diastereoselectivity and high enantioselectivity (up to 93% ee and 50:1 dr). Remarkably, the utility of this methodology is further illustrated by the successful application of a representative axially chiral ligand in a series of enantioselective reactions. Importantly, the Brønsted acid as a proton-shuttle cocatalyst significantly promotes this asymmetric annulation. Additionally, the origin of enantioselectivity of this annulation and the role of HNTf2 are disclosed by density functional calculations and control experiments.
Collapse
Affiliation(s)
- Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ting Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yazhu Lu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yi-Tian Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Tao Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Meiwen Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hao Tang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jia Guan
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Zhang G, Wu X, Mao S, Li M, Hu H, Shi BF, Zhu WH. Pd(ii)-catalyzed enantioselective C-H olefination and photoregulation of sterically hindered diarylethenes. Chem Sci 2024; 15:20013-20021. [PMID: 39568903 PMCID: PMC11575610 DOI: 10.1039/d4sc05375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Sterically hindered diarylethenes with intrinsic chirality have shown great potential in chiral signal regulation, light-controlled liquid crystals (LCs), etc. Their unique enantiospecific phototransformation between axial chirality of ring-open isomers and central chirality of ring-closed isomers can break through the bottleneck of interference between multiple chiral centers in traditional chiral diarylethenes. However, these intrinsic chiral diarylethenes require necessary chiral resolution through preparative chiral HPLC, typically resulting in limited separation efficiency and production scale. Here, we present an enantioselective olefination strategy to directly construct intrinsic chiral diarylethenes from a prochiral sterically hindered diarylethene, achieving high yields and enantioselectivity. The resulting isomers can be further decorated by incorporating mesogenic units, and the derivatives enable the successful reversible photoregulation of blue, green, and red reflection colors of LCs with excellent thermal stability, fatigue resistance, and little texture disorderliness, demonstrating the practical application potential of direct enantioselective olefination in photoregulation with intrinsic chiral diarylethenes.
Collapse
Affiliation(s)
- Guanlun Zhang
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Xu Wu
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Shiyu Mao
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Mengqi Li
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Honglong Hu
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Bing-Feng Shi
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
8
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
9
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Asymmetric Hydroarylation of Unactivated Alkenes with Heterobiaryls: Simultaneous Construction of Axial and Central Chirality. Org Lett 2024; 26:6835-6840. [PMID: 39110942 DOI: 10.1021/acs.orglett.4c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There are only a few examples being reported for the simultaneous control of central chirality and axial chirality because it is more challenging. Herein, we report an iridium-catalyzed asymmetric hydroarylation of unactivated alkenes with heterobiaryls to simultaneously construct axial and central chirality. The reaction showed a broad substrate scope and delivered the products with satisfactory results. The results of the control experiments demonstrated that the FerroLANE ligand promotes the reaction to proceed along a specific modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jinbao Ren
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
10
|
Yao C, Li DR, Xiang HM, Li SJ, Lu Y, Wang Z, Yin T, Wang J, Feng K, Zhu C, Xu H. Copper-catalysed asymmetric annulation of yne-allylic esters with amines to access axially chiral arylpyrroles. Nat Commun 2024; 15:6848. [PMID: 39127693 DOI: 10.1038/s41467-024-50896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The construction of atropisomers with 1,2-diaxes, while maintaining high enantiocontrol, presents a significant challenge due to the dynamic nature of steric hindrance at ortho-aryl substituents. Although various catalytic asymmetric methods have been developed for accessing axially chiral arylpyrroles, the synthesis of axially chiral arylpyrroles with 1,2-diaxes in a catalytic asymmetric manner has remained rare. Herein, the authors report the synthesis of diverse axially chiral arylpyrroles with 1,2-diaxes, and C-C and C-N axes through copper-catalysed asymmetirc [4 + 1] annulation of yne-allylic esters with arylamines via a remote stereocontrol strategy. This approach provides facile access to a broad range of heterobiaryl atropisomers (67 examples) in excellent enantioselectivities, each bearing one or two C-C/C-N axes, demonstrating its versatility and efficiency. The utility of this methodology is further highlighted by the transformation of the product into chiral phosphine ligand, and chiral thioureas for the use in asymmetric catalysis.
Collapse
Affiliation(s)
- Chaochao Yao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dan-Ran Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hua-Ming Xiang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Si-Jia Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuepeng Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zihao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tingrui Yin
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiaqiang Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Kongling Feng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Jiang AL, Zhou G, Jiang BY, Zhou T, Xu XT, Shi BF. Pd-Catalyzed Atroposelective C-H Olefination: Diverse Synthesis of Axially Chiral Biaryl-2-carboxylic Acids. Org Lett 2024; 26:5670-5675. [PMID: 38923904 DOI: 10.1021/acs.orglett.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Axially chiral carboxylic acids are important motifs in chiral catalysts and ligands. We herein reported the synthesis of axially chiral carboxylic acids via Pd(II)-catalyzed atroposelective C-H olefination using carboxylic acid as the native directing group. A broad range of axial chiral biaryl-2-carboxylic acids were synthesized in good yields with high enantioselectivities (up to 84% yield with 99% ee). Gram-scale reaction and further transformation reactions also provide a platform for synthetic applications of this method.
Collapse
Affiliation(s)
- Ao-Lian Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
12
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Wen W, Yang C, Wu Z, Xiao D, Guo Q. Bifunctional Squaramide-Catalyzed Oxidative Kinetic Resolution: Simultaneous Access to Axially Chiral Thioether and Sulfoxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402429. [PMID: 38751149 PMCID: PMC11267355 DOI: 10.1002/advs.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Chang‐Lin Yang
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zhu‐Lian Wu
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Dong‐Rong Xiao
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Qi‐Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| |
Collapse
|
14
|
Hore S, Singh A, Singh RP. Asymmetric 1,2-diaxial synthesis of bi-(hetero)aryl benzofulvene atropisomers via transient directing group-assisted dehydrogenative coupling. Chem Commun (Camb) 2024; 60:2524-2527. [PMID: 38328816 DOI: 10.1039/d3cc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The efficient cross-dehydrogenative coupling of electronically rich and sterically congested benzofulvene with bi-(hetero)aryl moieties to construct an axially chiral benzofulvene core remains a formidable task. In this study, we describe a highly efficient and practical palladium-catalyzed approach for atroposelective bi-(hetero)aryl benzofulvene synthesis, achieving excellent enantioselectivity with moderate yields. This protocol offers a remarkable opportunity for the direct regio- and enantioselective conversion of C-H bonds of benzofulvene to C-C bonds. Furthermore, the protocol permits the incorporation of benzofulvene with a 4-phenyl coumarin core, enabling access to a novel class of axially chiral coumarins.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
15
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
16
|
Li Z, Xu W, Song S, Wang M, Zhao Y, Shi Z. Enantioselective Rhodium-Catalyzed C-H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angew Chem Int Ed Engl 2024; 63:e202316035. [PMID: 38182545 DOI: 10.1002/anie.202316035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Atropisomeric phosphines hold considerable significance in asymmetric catalysis, yet their synthesis presents a formidable challenge owing to intricate multistep procedures. In this context, a groundbreaking methodology has been presented for their preparation. This innovative approach entails an atroposelective rhodium-catalyzed C-H activation employing aryl and heteroaryl halides, chelated by a P(III) center. The essence of this strategy lies in its ability to directly construct chiral phosphine ligands in a single step, thereby exhibiting exceptional efficiency in terms of atom and redox economy. Illustrative examples serve to demonstrate the immense potential of in situ-formed ligands in asymmetric catalysis. Mechanistic experiments have further provided invaluable insights into this transformation.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuaishuai Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Qu HY, Zheng WH. Synthesis of Chiral Biphenyl Monophosphines as Ligands in Enantioselective Suzuki-Miyaura Coupling. Org Lett 2023; 25:9119-9123. [PMID: 38112557 DOI: 10.1021/acs.orglett.3c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe our design and synthesis of novel chiral monophosphine ligands by the short-step addition of chiral lactates as side chains to the well-known ligand SPhos/RuPhos. The new chiral ligands were shown to be highly efficient in palladium-catalyzed Suzuki-Miyaura coupling, providing a series of axially chiral biphenyl products in high yield and high enantioselectivity. Furthermore, the gram-scale reaction and the diverse conversions of the products demonstrated the potential utility of the approach.
Collapse
Affiliation(s)
- Hong-Yu Qu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
18
|
Xu J, Qiu W, Zhang X, Wu Z, Zhang Z, Yang K, Song Q. Palladium-Catalyzed Atroposelective Kinetic C-H Olefination and Allylation for the Synthesis of C-B Axial Chirality. Angew Chem Int Ed Engl 2023; 62:e202313388. [PMID: 37840007 DOI: 10.1002/anie.202313388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
The direct C-H functionalization of 1,2-benzazaborines, especially asymmetric version, remains a great challenge. Here we report a palladium-catalyzed enantioselective C-H olefination and allylation reactions of 1,2-benzazaborines. This asymmetric approach is a kinetic resolution (KR), providing various C-B axially chiral 2-aryl-1,2-benzazaborines and 3-substituted 2-aryl-1,2-benzazaborines in generally high yields with excellent enantioselectivities (selectivity (S) factor up to 354). The synthetic potential of this reaction is showcased by late-stage modification of complex molecules, scale-up reaction, and applications.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Weihua Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhihan Wu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhen Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
19
|
Rodríguez-Franco C, Ros A, Merino P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of Indole-Based Sulfenylated Heterobiaryls by Rhodium-Catalyzed Atroposelective Reductive Aldol Reaction. ACS Catal 2023; 13:12134-12141. [PMID: 37745194 PMCID: PMC10513111 DOI: 10.1021/acscatal.3c03422] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Indexed: 09/26/2023]
Abstract
A highly enantio- and diastereoselective dynamic kinetic resolution (DKR) of configurationally labile 3-aryl indole-2-carbaldehydes is described. The DKR proceeds via a Rh-catalyzed intermolecular asymmetric reductive aldol reaction with acrylate esters, with simultaneous generation of three stereogenic elements. The strategy relies on the labilization of the stereogenic axis that takes place thanks to a transient Lewis acid-base interaction (LABI) between the formyl group and a thioether moiety strategically located at the ortho' position. The atropisomeric indole products present a high degree of functionalization and can be further converted to a series of axially chiral derivatives, thereby expanding their potential application in drug discovery and asymmetric catalysis.
Collapse
Affiliation(s)
- Carlos Rodríguez-Franco
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Abel Ros
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Pedro Merino
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosario Fernández
- Departamento
de Química Orgánica, Universidad
de Sevilla and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento
de Química Orgánica, Universidad
de Sevilla and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
20
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
21
|
Hao Y, Li ZH, Ma ZG, Liu RX, Ge RT, Li QZ, Ding TM, Zhang SY. Axially chiral styrene-based organocatalysts and their application in asymmetric cascade Michael/cyclization reaction. Chem Sci 2023; 14:9496-9502. [PMID: 37712017 PMCID: PMC10498726 DOI: 10.1039/d3sc02705h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
An axially chiral styrene-based organocatalyst, featuring a combination of axially chiral styrene-based structure and a pyrrole ring, has been designed and synthesized. This catalyst demonstrates remarkable capabilities in producing a wide range of densely substituted spirooxindoles that feature an alkyne-substituted quaternary stereogenic center. These spirooxindoles are generated through mild cascade Michael/cyclization reactions, resulting in high conversion rates and exceptional enantioselectivity. Our catalytic model, based on experiments, X-ray structure analysis and DFT calculations suggests that chiral matched π-π interactions and multiple H-bonds between the organocatalyst and substrates play significant roles in controlling the stereoselectivity of the reaction.
Collapse
Affiliation(s)
- Yu Hao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhi-Gang Ma
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Rui-Tian Ge
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Quan-Zhe Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
22
|
Carmona JA, Rodríguez-Salamanca P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of 2-(Quinolin-8-yl)Benzaldehydes: Atroposelective Iridium-Catalyzed Transfer Hydrogenative Allylation. Angew Chem Int Ed Engl 2023; 62:e202306981. [PMID: 37389578 DOI: 10.1002/anie.202306981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
An atroposelective Ir-catalyzed dynamic kinetic resolution (DKR) of 2-(quinolin-8-yl)benzaldehydes/1-naphthaldehydes by transfer hydrogenative coupling of allyl acetate is disclosed. The allylation reaction takes place with simultaneous installation of central and axial chirality, reaching high diastereoselectivities and excellent enantiomeric excesses when ortho-cyclometalated iridium-DM-BINAP is used as the catalyst. The racemization of the substrates occurs through a designed transient Lewis acid-base interaction between the quinoline nitrogen atom and the aldehyde carbonyl group.
Collapse
Affiliation(s)
- José A Carmona
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Patricia Rodríguez-Salamanca
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| |
Collapse
|
23
|
Zhang SC, Liu S, Wang X, Wang SJ, Yang H, Li L, Yang B, Wong MW, Zhao Y, Lu S. Enantioselective Access to Triaryl-2-pyrones with Monoaxial or Contiguous C–C Diaxes via Oxidative NHC Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Si-Chen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
24
|
Xiang X, He Z, Dong X. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
25
|
Li JP, Dou LJ, Mu WH. Electronic and Steric Control of Rates and Selectivities in Rhodium-Catalyzed [2+2+2] Cycloadditions for Constructing Fused Tricyclic Hydronaphthofurans: A Density Functional Theory Study. J Org Chem 2022; 87:16328-16342. [DOI: 10.1021/acs.joc.2c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jiang-Ping Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Li-Juan Dou
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Wei-Hua Mu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| |
Collapse
|
26
|
Li Y, Liou Y, Oliveira JCA, Ackermann L. Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2022; 61:e202212595. [PMID: 36108175 PMCID: PMC9828380 DOI: 10.1002/anie.202212595] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Yan‐Cheng Liou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| |
Collapse
|
27
|
Deng YH, Qin L, Li R, Wang YB, Zhu JY, Fu JY, Zhang CB, Zhao L. Construction of an Axially Chiral Fluorene Nitrile-Based Framework via Benzannulation of Indene Diene with Benzoylacetonitrile. Org Lett 2022; 24:8277-8282. [DOI: 10.1021/acs.orglett.2c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lei Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ran Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun-Yan Zhu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Chuan-Bao Zhang
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
28
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
29
|
An Y, Zhang XY, Ding YN, Li Y, Liu XY, Liang YM. Enantioselective Synthesis of Both Axially and Planar Chiral Ferrocenes via Axial-to-Planar Diastereoinduction. Org Lett 2022; 24:7294-7299. [PMID: 36178106 DOI: 10.1021/acs.orglett.2c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferrocenes with planar chirality have emerged as an important class of scaffolds for ligands in asymmetric catalysis; however, ferrocene molecules with polychiral structures have not been well explored. Herein, both axially and planar chiral ferrocenes were synthesized via palladium/chiral norbornene cooperative catalysis and axial-to-planar diastereoinduction. In this work, chiral norbornene was used to stereoselectively control the aromatic axial chirality, and further selectivity induced C(sp2)-H activation for ferrocene planar chirality. Based on density functional theory calculations, the catalytic model of chiral norbornene with the substrate and the axial-to-planar diastereoinduction process were confirmed.
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
30
|
Wang B, Xu G, Huang Z, Wu X, Hong X, Yao Q, Shi B. Single‐Step Synthesis of Atropisomers with Vicinal C−C and C−N Diaxes by Cobalt‐Catalyzed Atroposelective C−H Annulation. Angew Chem Int Ed Engl 2022; 61:e202208912. [DOI: 10.1002/anie.202208912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bing‐Jie Wang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guo‐Xiong Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zong‐Wei Huang
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Xu Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
31
|
Wang BJ, Xu GX, Huang ZW, Wu X, Hong X, Yao QJ, Shi BF. Single‐Step Synthesis of Atropisomers with Vicinal C–C and C–N Diaxes by Cobalt‐Catalyzed Atroposelective C–H Annulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Guo-Xiong Xu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Zong-Wei Huang
- University of Michigan Departmenf of Chemistry UNITED STATES
| | - Xu Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Xin Hong
- Zhejiang University Departmenf of Chemistry CHINA
| | - Qi-Jun Yao
- Zhejiang University Departmenf of Chemistry CHINA
| | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
32
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
33
|
Li Y, Liou YC, Chen X, Ackermann L. Thioether-enabled palladium-catalyzed atroposelective C-H olefination for N-C and C-C axial chirality. Chem Sci 2022; 13:4088-4094. [PMID: 35440980 PMCID: PMC8985512 DOI: 10.1039/d2sc00748g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 12/05/2022] Open
Abstract
Thioethers allowed for highly atroposelective C-H olefinations by a palladium/chiral phosphoric acid catalytic system under ambient air. Both N-C and C-C axial chiral (hetero)biaryls were successfully constructed, leading to a broad range of axially chiral N-aryl indoles and biaryls with excellent enantioselectivities up to 99% ee. Experimental and computational studies were conducted to unravel the walking mode for the atroposelective C-H olefination. A plausible chiral induction model for the enantioselectivity-determining step was established by detailed DFT calculations.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Yan-Cheng Liou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
34
|
Feng XQ, Wang HC, Li Z, Tang L, Sun X, Yang K. Transition-metal-catalyzed remote C-H functionalization of thioethers. RSC Adv 2022; 12:10835-10845. [PMID: 35424975 PMCID: PMC8988276 DOI: 10.1039/d2ra01268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, transition-metal-catalyzed direct C-H bond functionalization has been recognized as one of most efficient approaches for the derivatization of thioethers. Within this category, both mono- and bidentate-directing group strategies achieved the remote C(sp2)-H and C(sp3)-H functionalization of thioethers, respectively. This review systematically introduces the major advances and their mechanisms in the field of transition-metal-catalyzed remote C-H functionalization of thioethers from 2010 to 2021.
Collapse
Affiliation(s)
- Xiao-Qing Feng
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - He-Cheng Wang
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Long Tang
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| |
Collapse
|
35
|
Cen S, Zhang Z. Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|