1
|
Fan G, Hou S, Gu Y, Jiang H, Zhang W, Wu W, Wang M, Tian L. NIR-II Emissive Oligonucleotides Grafted π-Conjugated Polymers for Low-Temperature Photothermal and Gene Combined Therapy. Angew Chem Int Ed Engl 2025; 64:e202425654. [PMID: 39904731 DOI: 10.1002/anie.202425654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
In order to address the strong hydrophobicity and function limitation of NIR-II emissive phototheranostic π-conjugated polymers (CPs), appropriate modifications are necessary to impart water dispersibility and functionality to CPs. This study uses DNA as the hydrophilic and functional unit to modify CPs, synthesizing CP-g-DNA amphiphilic copolymers and producing water-dispersible oligonucleotide-modified π-conjugated polymer nanoparticles (OCPNs) by self-assembly. In addition to DNA's gene regulation abilities that can combine with the low-temperature photothermal therapy of CPs for enhanced tumor therapy, OCPNs display unique characteristics as novel nanomaterials. On one side, DNA changes the π-π interactions and results in a two-fold enhancement in NIR-II fluorescence emission, which greatly benefits tumor imaging. On the other side, DNA varies the surface properties of OCPNs and the nano-bio interactions. OCPNs exhibit multiple cellular internalization pathways, including caveolae/lipid raft-mediated uptake for cytoplasm delivery, which may enhance gene transfection combined with the photothermal-promoted lysosome escape. Moreover, OCPNs can quickly accumulate in tumors due to their higher tissue penetration capability. Taken together, a strategy of using DNA to enable and advance the phototheranostic applications of CPs has been demonstrated, and the distinct properties of OCPNs will open up new biological application opportunities in the future.
Collapse
Affiliation(s)
- Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Ying Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Weitao Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Mengying Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
2
|
Liu X, Zhang Z, Cao Z, Yuan H, Xing C. Near-Infrared Light-Controlled Dynamic Hydrogel for Modulating Mechanosensitive Ion Channels in 3-Dimensional Environment. Biomater Res 2025; 29:0182. [PMID: 40207256 PMCID: PMC11979339 DOI: 10.34133/bmr.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca2+ influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.
Collapse
Affiliation(s)
- Xiaoning Liu
- School of Materials Science and Engineering,
Hebei University of Technology, Tianjin 300401, China
| | - Zimeng Zhang
- Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering,
Hebei University of Technology, Tianjin 300401, China
| | - Zhanshuo Cao
- School of Chemical Engineering,
Hebei University of Technology, Tianjin 300401, China.
| | - Hongbo Yuan
- Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering,
Hebei University of Technology, Tianjin 300401, China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, 3001 Heverlee, Belgium
| | - Chengfen Xing
- School of Materials Science and Engineering,
Hebei University of Technology, Tianjin 300401, China
- Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering,
Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Ke Y, Sun Y, Liao A, Zhao F, Tan Y, Tan C. Conjugated Polyelectrolyte-Based Sensor Arrays: from Sensing Mechanisms to Artificial Sensory System Conceptualization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16396-16409. [PMID: 40048404 DOI: 10.1021/acsami.4c22848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
In the past decades, conjugated polyelectrolytes (CPEs) have become prominent in sensing applications due to their unique properties, including strong and tunable light absorption, high sensitivity, water solubility, and biocompatibility. Inspired by mammalian olfactory and gustatory systems, CPE-based sensor arrays have made significant strides in discriminating structurally similar analytes and complex mixtures for various applications. This review consolidates recent advancements in CPE-based sensor arrays, highlighting rational design, controllable fabrication, and effective data processing methods. It covers the fundamentals of CPE fluorescence sensing, emphasizing design strategies for sensor array units and data processing techniques. The broad applicability of CPE-based sensor arrays is demonstrated across diverse domains, including environmental monitoring (e.g., detecting metal ions and explosives), medical diagnostics (e.g., sensing disease markers and analyzing biological samples), and food safety (e.g., assessing the freshness, quality, and source of food products). Further, challenges and future directions in the field are discussed to inspire further research and development in this area.
Collapse
Affiliation(s)
- Yulei Ke
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuanjie Sun
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Anhui Liao
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Fangxi Zhao
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Xiao F, Shen X, Tang W, Yang D. Emerging Trends in DNA Nanotechnology-Enabled Cell Surface Engineering. JACS AU 2025; 5:550-570. [PMID: 40017777 PMCID: PMC11863167 DOI: 10.1021/jacsau.4c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Cell surface engineering is a rapidly advancing field, pivotal for understanding cellular physiology and driving innovations in biomedical applications. In this regard, DNA nanotechnology offers unprecedented potential for precisely manipulating and functionalizing cell surfaces by virtue of its inherent programmability and versatile functionalities. Herein, this Perspective provides a comprehensive overview of emerging trends in DNA nanotechnology for cell surface engineering, focusing on key DNA nanostructure-based tools, their roles in regulating cellular physiological processes, and their biomedical applications. We first discuss the strategies for integrating DNA molecules onto cell surfaces, including the attachment of oligonucleotides and the higher-order DNA nanostructure. Second, we summarize the impact of DNA-based surface engineering on various cellular processes, such as membrane protein degradation, signaling transduction, intercellular communication, and the construction of artificial cell membrane components. Third, we highlight the biomedical applications of DNA-engineered cell surfaces, including targeted therapies for cancer and inflammation, as well as applications in cell capture/protection and diagnostic detection. Finally, we address the challenges and future directions in DNA nanotechnology-based cell surface engineering. This Perspective aims to provide valuable insights for the rational design of DNA nanotechnology in cell surface engineering, contributing to the development of precise and personalized medicine.
Collapse
Affiliation(s)
- Fan Xiao
- Department
of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P. R. China
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Xinghong Shen
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Wenqi Tang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Dayong Yang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
- Bioinformatics
Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
5
|
Liu W, Liao N, Lei Y, Liang W, Yang X, Yuan R, Yang C, Zhuo Y. Detachable DNA Assembly Module to Dissect Tumor Cells Heterogeneity via RNA Pinpoint Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401253. [PMID: 39422178 PMCID: PMC11633503 DOI: 10.1002/advs.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Differential RNA expression is becoming increasingly valuable in evaluating tumor heterogeneity for a better understanding of malignant tumors and guiding personalized therapy. However, traditional techniques for analyzing cellular RNA are mainly focused on determining the absolute level of RNA, which may lead to inaccuracies in understanding tumor heterogeneity, primarily due to i) the subtle differences in certain RNA types that have similar total concentrations and ii) the existence of variations in RNA expression across different samples. Herein, a detachable DNA assembly module is proposed that is capable not only of quantifying the expression level of target RNA but also of innovatively evaluating its proportion within its RNA family population through a sequential assembly and disassembly route. Using the let-7 family as an experimental model, a significant difference is discovered in let-7a proportion between normal mammary epithelial cells and breast cancer cells, a characteristic that is often missed in bulk analysis of traditional techniques. By combining concentration and proportion information, the detachable DNA assembly module demonstrates markedly higher efficiency in discerning among various types of cells compared to traditional techniques. This innovative assembly module is expected to offer a new perspective to highlight tumor heterogeneity and guide personalized therapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ni Liao
- College of Biological and Chemical EngineeringPanzhihua UniversityPanzhihua617000P. R. China
| | - Yanmei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Chaoyong Yang
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and InstrumentationDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| |
Collapse
|
6
|
Guo Y, Zhou Y, Duan H, Xu D, Wei M, Wu Y, Xiong Y, Chen X, Wang S, Liu D, Huang X, Xin H, Xiong Y, Tang BZ. CRISPR/Cas-mediated "one to more" lighting-up nucleic acid detection using aggregation-induced emission luminogens. Nat Commun 2024; 15:8560. [PMID: 39362874 PMCID: PMC11450156 DOI: 10.1038/s41467-024-52931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
CRISPR diagnostics are effective but suffer from low signal transduction efficiency, limited sensitivity, and poor stability due to their reliance on the trans-cleavage of single-stranded nucleic acid fluorescent reporters. Here, we present CrisprAIE, which integrates CRISPR/Cas reactions with "one to more" aggregation-induced emission luminogen (AIEgen) lighting-up fluorescence generated by the trans-cleavage of Cas proteins to AIEgen-incorporated double-stranded DNA labeled with single-stranded nucleic acid linkers and Black Hole Quencher groups at both ends (Q-dsDNA/AIEgens-Q). CrisprAIE demonstrates superior performance in the clinical nucleic acid detection of norovirus and SARS-CoV-2 regardless of amplification. Moreover, the diagnostic potential of CrisprAIE is further enhanced by integrating it with spherical nucleic acid-modified AIEgens (SNA/AIEgens) and a portable cellphone-based readout device. The improved CrisprAIE system, utilizing Q-dsDNA/AIEgen-Q and SNA/AIEgen reporters, exhibits approximately 80- and 270-fold improvements in sensitivity, respectively, compared to conventional CRISPR-based diagnostics. We believe CrisprAIE can be readily extended as a universal signal generation strategy to significantly enhance the detection efficiency of almost all existing CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Yuqian Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Derong Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Min Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Xiong
- National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Daofeng Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Wang G, Han S, Lu Y. From Structure to Application: The Evolutionary Trajectory of Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310026. [PMID: 38860348 DOI: 10.1002/smll.202310026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Collapse
Affiliation(s)
- Guijia Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Zheng J, Tian S, Lai Q, Ji X, Zhou F, He Z. Target-induced DNA nanomachine operation for the detection of proteins. Talanta 2024; 275:126143. [PMID: 38669960 DOI: 10.1016/j.talanta.2024.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Accurate and sensitive detection of disease-associated proteins in early stage of patients plays an important role in timely treatment and successfully extending patients' lives. To meet this demand, we herein rationally designed a flexible target-induced DNA nanomachine operation (TIDNMO) sensor for the detection of proteins. The TIDNMO system was composed of DNA nanoswitch and DNA walker. Triplex DNA nanoswitch was triggered by specific target, followed by the release of the walking strand, which initiated the DNA walker amplification as signal output. In addition, the Exo III could drive walking strand autonomously move on gold nanoparticle surface to realize 2 orders of magnitude signal amplification. What's more, this sensor could transform its suitable functional recognition element of DNA nanoswitch to recognize other specific molecule and realize different targets sensing based on identical walking tracks. Considering the facile reporter elements and efficient amplification performance, the present DNA nanomachine as a sensor could achieve a detection limit of 68 pM for anti-Dig antibody, 0.95 pM for mucin-1 respectively, along with a superb specificity. Furthermore, the method reported here opened a new chapter in disease-related protein sensing for the development of clinical early diagnosis.
Collapse
Affiliation(s)
- Jiao Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, 430071, Wuhan, China; College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Songbai Tian
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China; School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, China
| | - Qizhen Lai
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, 430071, Wuhan, China
| | - Zhike He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, 430071, Wuhan, China; College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
9
|
Lochenie C, Duncan S, Zhou Y, Fingerhut L, Kiang A, Benson S, Jiang G, Liu X, Mills B, Vendrell M. Photosensitizer-Amplified Antimicrobial Materials for Broad-Spectrum Ablation of Resistant Pathogens in Ocular Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404107. [PMID: 38762778 DOI: 10.1002/adma.202404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The emergence of multidrug resistant (MDR) pathogens and the scarcity of new potent antibiotics and antifungals are one of the biggest threats to human health. Antimicrobial photodynamic therapy (aPDT) combines light and photosensitizers to kill drug-resistant pathogens; however, there are limited materials that can effectively ablate different classes of infective pathogens. In the present work, a new class of benzodiazole-paired materials is designed as highly potent PDT agents with broad-spectrum antimicrobial activity upon illumination with nontoxic light. The results mechanistically demonstrate that the energy transfer and electron transfer between nonphotosensitive and photosensitive benzodiazole moieties embedded within pathogen-binding peptide sequences result in increased singlet oxygen generation and enhanced phototoxicity. Chemical optimization renders PEP3 as a novel PDT agent with remarkable activity against MDR bacteria and fungi as well as pathogens at different stages of development (e.g., biofilms, spores, and fungal hyphae), which also prove effective in an ex vivo porcine model of microbial keratitis. The chemical modularity of this strategy and its general compatibility with peptide-based targeting agents will accelerate the design of highly photosensitive materials for antimicrobial PDT.
Collapse
Affiliation(s)
- Charles Lochenie
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sheelagh Duncan
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Yanzi Zhou
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Leonie Fingerhut
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alex Kiang
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sam Benson
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Guanyu Jiang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Bethany Mills
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
10
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
11
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
12
|
Li S, Chen Q, Xu Q, Wei Z, Shen Y, Wang H, Cai H, Gu M, Xiao Y. Hierarchical Self-Assembly Molecular Building Blocks as Intelligent Nanoplatforms for Ovarian Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309547. [PMID: 38408141 PMCID: PMC11077652 DOI: 10.1002/advs.202309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Hierarchical self-assembly from simple building blocks to complex polymers is a feasible approach to constructing multi-functional smart materials. However, the polymerization process of polymers often involves challenges such as the design of building blocks and the drive of external energy. Here, a hierarchical self-assembly with self-driven and energy conversion capabilities based on p-aminophenol and diethylenetriamine building blocks is reported. Through β-galactosidase (β-Gal) specific activation to the self-assembly, the intelligent assemblies (oligomer and superpolymer) with excellent photothermal and fluorescent properties are dynamically formed in situ, and thus the sensitive multi-mode detection of β-Gal activity is realized. Based on the overexpression of β-Gal in ovarian cancer cells, the self-assembly superpolymer is specifically generated in SKOV-3 cells to achieve fluorescence imaging. The photothermal therapeutic ability of the self-assembly oligomer (synthesized in vitro) is evaluated by a subcutaneous ovarian cancer model, showing satisfactory anti-tumor effects. This work expands the construction of intelligent assemblies through the self-driven cascade assembly of small molecules and provides new methods for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangsu Institute of HematologyNational Clinical Research Center for Hematologic DiseasesNHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital and Collaborative Innovation Center of HematologySoochow UniversitySuzhou215006China
| | - Qingrong Chen
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Qi Xu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Zhongyu Wei
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yongjin Shen
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Hua Wang
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhan430071China
| | - Hongbing Cai
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhan430071China
| | - Meijia Gu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuxiu Xiao
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| |
Collapse
|
13
|
Yang J, Xu Z, Yu L, Wang B, Hu R, Tang J, Lv J, Xiao H, Tan X, Wang G, Li JX, Liu Y, Shao PL, Zhang B. Organic Fluorophores with Large Stokes Shift for the Visualization of Rapid Protein and Nucleic Acid Assays. Angew Chem Int Ed Engl 2024; 63:e202318800. [PMID: 38443316 DOI: 10.1002/anie.202318800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Organic small-molecule fluorophores, characterized by flexible chemical structure and adjustable optical performance, have shown tremendous potential in biosensing. However, classical organic fluorophore motifs feature large overlap between excitation and emission spectra, leading to the requirement of advanced optical set up to filter desired signal, which limits their application in scenarios with simple settings. Here, a series of wavelength-tunable small-molecule fluorescent dyes (PTs) bearing simple organic moieties have been developed, which exhibit Stokes shift up to 262 nm, molar extinction coefficients ranged 30,000-100,000 M-1 cm-1, with quantum yields up to 54.8 %. Furthermore, these dyes were formulated into fluorescent nanoparticles (PT-NPs), and applied in lateral flow assay (LFA). Consequently, limit of detection for SARS-CoV-2 nucleocapsid protein reached 20 fM with naked eye, a 100-fold improvement in sensitivity compared to the pM detection level for colloidal gold-based LFA. Besides, combined with loop-mediated isothermal amplification (LAMP), the LFA system achieved the visualization of single copy level nucleic acid detection for monkeypox (Mpox).
Collapse
Affiliation(s)
- Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Le Yu
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University. Xi'an, Xi An Shi, 710127, China
| | - Bingyun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Xuan Tan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jia-Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Pan-Lin Shao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| |
Collapse
|
14
|
Yu Y, Ni W, Hu Q, Li H, Zhang Y, Gao X, Zhou L, Zhang S, Ma S, Zhang Y, Huang H, Li F, Han J. A Dual Fluorescence Turn-On Sensor Array Formed by Poly(para-aryleneethynylene) and Aggregation-Induced Emission Fluorophores for Sensitive Multiplexed Bacterial Recognition. Angew Chem Int Ed Engl 2024; 63:e202318483. [PMID: 38407995 DOI: 10.1002/anie.202318483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Bacterial infections have emerged as the leading causes of mortality and morbidity worldwide. Herein, we developed a dual-channel fluorescence "turn-on" sensor array, comprising six electrostatic complexes formed from one negatively charged poly(para-aryleneethynylene) (PPE) and six positively charged aggregation-induced emission (AIE) fluorophores. The 6-element array enabled the simultaneous identification of 20 bacteria (OD600=0.005) within 30s (99.0 % accuracy), demonstrating significant advantages over the array constituted by the 7 separate elements that constitute the complexes. Meanwhile, the array realized different mixing ratios and quantitative detection of prevalent bacteria associated with urinary tract infection (UTI). It also excelled in distinguishing six simulated bacteria samples in artificial urine. Remarkably, the limit of detection for E. coli and E. faecalis was notably low, at 0.000295 and 0.000329 (OD600), respectively. Finally, optimized by diverse machine learning algorithms, the designed array achieved 96.7 % accuracy in differentiating UTI clinical samples from healthy individuals using a random forest model, demonstrating the great potential for medical diagnostic applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huihai Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Xu Gao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Lingjia Zhou
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Shuming Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Shuoyang Ma
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, 210006, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
15
|
Wu J, Zheng X, Lin W, Chen L, Wu ZS. Persistent Targeting DNA Nanocarrier Made of 3D Structural Unit Assembled from Only One Basic Multi-Palindromic Oligonucleotide for Precise Gene Cancer Therapy. Adv Healthc Mater 2024; 13:e2303865. [PMID: 38289018 DOI: 10.1002/adhm.202303865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Indexed: 02/13/2024]
Abstract
Construction of a simple, reconfigurable, and stimuli-responsive DNA nanocarrier remains a technical challenge. In this contribution, by designing three palindromic fragments, a simplest four-sticky end-contained 3D structural unit (PS-unit) made of two same DNA components is proposed. Via regulating the rotation angle of central longitudinal axis of PS-unit, the oriented assembly of one-component spherical architecture is accomplished with high efficiency. Introduction of an aptamer and sticky tail warehouse into one component creates a size-change-reversible targeted siRNA delivery nanovehicle. Volume swelling of 20 nm allows one carrier to load 1987 siPLK1s. Once entering cancer cells and responding to glutathione (GSH) stimuli, siPLK1s are almost 100% released and original size of nanovehicle is restored, inhibiting the expression of PLK1 protein and substantially suppressing tumor growth (superior to commercial transfection agents) in tumor-bearing mice without systemic toxicity.
Collapse
Affiliation(s)
- Jingting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoqi Zheng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenqing Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
16
|
Chen L, Li ZY, Zhang J, Zhao Y, Hu R, Yang YH, Yang T. Target-triggered stochastic DNAzyme motors on spherical nucleic acids for simultaneous fluorescence assay of double miRNAs. Talanta 2024; 266:125032. [PMID: 37572479 DOI: 10.1016/j.talanta.2023.125032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Simultaneous quantifications of multiple miRNAs in the single-sampling system would be conducive to the accurate diagnosis of diseases in contrast with single miRNA analysis. In this work, a stochastic DNAzyme motor on spherical nucleic acids (SNAs) for simultaneous fluorescence assay of double miRNAs was established. Hairpin 1 (H1)-FAM-7a and H1-TAMRA-133a-functionalized magnetic beads (MBs) as SNAs were mixed. Targets (let-7a and miRNA-133a) reacted with two different S1 and S2, triggering the formation of two types of metal DNAzymes. The DNAzymes can further react with H1 stem-loop DNA on SNAs to release the two fluorescent DNA-FAM and DNA-TAMRA fragments in the presence of Mg2+. Meanwhile, the DNAzyme as DNA motors were separated from the previous H1 probe to participate the next cycling operations, resulting in the signal amplification toward the simultaneous and sensitive detection of let-7a and miRNA-133a. SNAs with three dimensional nanostructures provided enough space for the operation of DNAzyme walker, promoting the sensitivity of this proposed analytical system. The two mixed SNAs enable one-step and specific quantification of miRNA let-7a and miRNA-133a with lower detection limits of 90.5 fM and 74.9 fM, respectively. Finally, this proposed strategy was employed to simultaneously detect double miRNAs in practical applicability.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China
| | - Zi Ying Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China.
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, PR China.
| |
Collapse
|
17
|
Wang H, Yang B, Tang H, Ding S, Liu G. Hairpin DNA-based electrochemical amplification strategy for miRNA sensing by using single gold nanoelectrodes. Analyst 2023; 148:5636-5641. [PMID: 37846736 DOI: 10.1039/d3an01551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A new sensor has been developed to detect miRNA-15 using nanoelectrodes and a hairpin DNA-based electrochemical amplification technique. By utilizing a complex DNA cylinder connected with hairpin DNA1, the sensor is able to absorb more methylene blue (MB) than simple double-stranded DNA. Another hairpin DNA2 is modified on an Au nanoelectrode surface and, when miRNA-15 is introduced, it triggers a chain reaction. This reaction unlocks two hairpins alternatively to polymerize into a complex structure that attaches more MB. The miRNA-15 is then replaced by DNA1 due to strand displacement reactions and continues to react with the next DNA2 to achieve circular amplification. The electrochemical signal from MB oxidation has a linear relationship with the miRNA-15 concentrations, making it possible to detect miRNA-15. Moreover, this method can be readily adapted for the detection of various other miRNA species. The newly devised nanosensor holds promising applications for the in vivo detection of miRNA-15 within biological systems, which is achieved by leveraging the advantageous characteristics of nanoelectrodes, including their low resistance-capacitance time constant, rapid mass transfer kinetics, and small diameter.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Sufang Ding
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Gen Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| |
Collapse
|
18
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
19
|
Jo S, Lee H, Park JH, Yang JK, Lee WJ, Lim J, Kim S, Lee S, Lee TS. Silica-Based Platform Decorated with Conjugated Polymer Dots and Prussian Blue for Improved Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43455-43467. [PMID: 37682242 DOI: 10.1021/acsami.3c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
To advance cancer treatment, we have developed a novel composite material consisting of conjugated polymer dots (CPDs) and Prussian blue (PB) particles, which were immobilized on, and encapsulated within, silica particles, respectively. The CPDs functioned as both a photosensitizer and a photodynamic agent, and the PB acted as a photothermal agent. The silica platform provided a biocompatible matrix that brought the two components into close proximity. Under laser irradiation, the fluorescence from the CPDs in the composite material enabled cell imaging and was subsequently converted to thermal energy by PB. This efficient energy transfer was accomplished because of the spectral overlap between the emission of donor CPDs and the absorbance of acceptor PB. The increase in local temperature in the cells resulted in a significant increase in the amount of reactive oxygen species (ROS) generated by CPDs, in which their independent use did not produce sufficient ROS for cancer cell treatment. To assess the impact of the enhanced ROS generation by the composite material, we conducted experiments using cancer cells under 532 nm laser irradiation. The results showed that with the increase in local temperature, the generated ROS increased by 30% compared with the control, which did not contain PB. When the silica-based composite material was positioned at the periphery of the tumor for 120 h, it led to a much slower tumor growth than other materials tested. By using a CPD-based photodynamic therapy platform, a new simplified approach to designing and preparing cancer treatments could be achieved, which included photothermal PB-assisted enhanced ROS generation using a single laser. This advancement opens up an exciting new opportunity for effective cancer treatment.
Collapse
Affiliation(s)
- Seonyoung Jo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Hyeonhee Lee
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hwan Park
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jin-Kyoung Yang
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Won-Jong Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Soojin Lee
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Taek Seung Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
20
|
Chen M, Lu Z, Li M, Jiang B, Liu S, Li Y, Zhang B, Li X, Yi T, Zhang D. Near-Infrared Emissive Cascaded Artificial Light-Harvesting System with Enhanced Antibacterial Efficiency. Adv Healthc Mater 2023; 12:e2300377. [PMID: 37122070 DOI: 10.1002/adhm.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Indexed: 05/02/2023]
Abstract
Combination of platinum(II) metallacycles and photodynamic inactivation presents a promising antibacterial strategy. Herein, a cascaded artificial light-capturing system is developed in which an aggregation-induced emission-active platinum(II) metallacycle (PtTPEM) is utilized as the antenna, sulforhodamine 101 (SR101) as a key conveyor, and the near-infrared emissive photosensitizer Chlorin-e6 (Ce6) as the final energy acceptor. The well-dispersed Ce6 in the proximity of energy donors not only avoids self-quenching in the physiological environment but also contributes to energy transfer from donor to acceptor, thereby significantly improving the 1 O2 generation ability of the light-harvesting system under white light irradiation. By integrating the platinum(II) metallacycle and 1 O2 , a more efficient synergistic antibacterial effect is achieved at low concentrations, along with a significant decrease in dark toxicity caused by PtTPEM.
Collapse
Affiliation(s)
- Maowen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yinuo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bangrui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xianying Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
21
|
Sardaru MC, Marangoci NL, Palumbo R, Roviello GN, Rotaru A. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules 2023; 28:3561. [PMID: 37110795 PMCID: PMC10141977 DOI: 10.3390/molecules28083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Narcisa-Laura Marangoci
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alexandru Rotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Institute for Research, Innovation and Technology Transfer, UPS “Ion Creanga”, Ion Creanga Str. 1, MD2069 Chisinau, Moldova
| |
Collapse
|
22
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|