1
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Wu X, Zhang S, Ning S, Yang C, Li L, Tang L, Wang J, Liu R, Yin X, Zhu Y, Chen S, Ye J. Recent advances and developments in solar-driven photothermal catalytic CO 2 reduction into multicarbon (C 2+) products. Chem Sci 2025; 16:4568-4594. [PMID: 39991564 PMCID: PMC11841621 DOI: 10.1039/d5sc00330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Solar-driven catalytic conversion of carbon dioxide (CO2) into value-added C2+ chemicals and fuels has attracted significant attention over the past decades, propelled by urgent environmental and energy demands. However, the catalytic reduction of CO2 continues to face significant challenges due to inherently slow reduction kinetics. This review traces the historical development and current state of photothermal CO2 reduction, detailing the mechanisms by which CO2 is transformed into C2+ products. A key focus is on catalyst design, emphasizing surface defect engineering, bifunctional active site and co-catalyst coupling to enhance the efficiency and selectivity of solar-driven C2+ synthesis. Key reaction pathways to both C1 and C2+ products are discussed, ranging from CO, CH4 and methanol (CH3OH) synthesis to the production of C2-4 products such as C2-4 hydrocarbons, ethanol, acetic acid, and various carbonates. Notably, the advanced synthesis of C5+ hydrocarbons exemplifies the remarkable potential of photothermal technologies to effectively upgrade CO2-derived products, thereby delivering sustainable liquid fuels. This review provides a comprehensive overview of fundamental mechanisms, recent breakthroughs, and pathway optimizations, culminating in valuable insights for future research and industrial-scale prospect of photothermal CO2 reduction.
Collapse
Affiliation(s)
- Xiuting Wu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Senlin Zhang
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Shangbo Ning
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Chuanyun Yang
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Ling Li
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Linjun Tang
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Jing Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Ruixiang Liu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Xingyu Yin
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Ying Zhu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Shaohua Chen
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Jinhua Ye
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan
- Advanced Catalytic Materials Research Center, School of Material Science and Engineering, Tianjin University Tianjin 300072 China
| |
Collapse
|
3
|
Han J, Han Y, Yu J, Sun Y, Cui X, Ge Q, Sun J. Low-temperature CO 2 Hydrogenation to Olefins on Anorthic NaCoFe Alloy Carbides. Angew Chem Int Ed Engl 2025; 64:e202420621. [PMID: 39563018 DOI: 10.1002/anie.202420621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The hydrogenation of carbon dioxide to olefins (CTO) represents an ideal pathway towards carbon neutrality. However, most current CTO catalysts require a high-temperature condition of 300-450 °C, resulting in high energy consumption and possible aggregation among active sites. Herein, we developed an efficient iron-based catalyst modified with high-sodium content (7 %) and low-cobalt content (2 %), achieving a CO2 conversion of 22.0 % and an olefin selectivity of 55.9 % at 240 °C and 1000 mL/g/h, and it is even active at 180 °C and 4000 mL/g/h with more than 25 % olefins in hydrocarbons. The catalyst was kept stable under continuous operating conditions of 500 hours. Numerous characterizations and calculations reveal high content of sodium as an electronic promoter enhances the stability of the active anorthic Fe5C2 phase at low temperatures. Further incorporating the above catalyst with cobalt, as a structural promoter, causes Fe species to form a FexCoy alloying phase, which in turn facilitates the formation of higher active anorthic (FexCoy)5C2 phase, different from the conventional carbides and alloy carbides. An in-depth investigation of the synergistic effects of structural and electronic promoters can improve catalyst performance, increase reaction efficiency and cost-effectiveness, and provide profound insights for understanding and optimizing CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Jianxiang Han
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Han
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yannan Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiwen Cui
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingjie Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Kang X, Liu J, Wang D, Tian C, Fu H. Tandem Pt/TiO 2 and Fe 3C catalysts for direct transformation of CO 2 to light hydrocarbons under high space velocity. J Colloid Interface Sci 2025; 678:1165-1175. [PMID: 39284271 DOI: 10.1016/j.jcis.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Xin Kang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Jiancong Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
| | - Dongxu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
| |
Collapse
|
5
|
Zhu J, Shaikhutdinov S, Cuenya BR. Structure-reactivity relationships in CO 2 hydrogenation to C 2+ chemicals on Fe-based catalysts. Chem Sci 2025; 16:1071-1092. [PMID: 39691462 PMCID: PMC11648294 DOI: 10.1039/d4sc06376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Catalytic conversion of carbon dioxide (CO2) to value-added products represents an important avenue towards achieving carbon neutrality. In this respect, iron (Fe)-based catalysts were recognized as the most promising for the production of C2+ chemicals via the CO2 hydrogenation reaction. However, the complex structural evolution of the Fe catalysts, especially during the reaction, presents significant challenges for establishing the structure-reactivity relationships. In this review, we provide critical analysis of recent in situ and operando studies on the transformation of Fe-based catalysts in the hydrogenation of CO2 to hydrocarbons and alcohols. In particular, the effects of composition, promoters, support, and particle size on reactivity; the role of the catalyst's activation procedure; and the catalyst's evolution under reaction conditions will be addressed.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Interface Science, Fritz Haber Institute of the Max Plank Society Faradayweg 4-6 14195 Berlin Germany
| | - Shamil Shaikhutdinov
- Department of Interface Science, Fritz Haber Institute of the Max Plank Society Faradayweg 4-6 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Plank Society Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
6
|
He J, Xu L, Qin C, Zhang J, Liu D, Li Q, Feng Z, Wang J, Liu P, Li H, Yang Z. Electron Reservoir Effect of Adjacent Fe Nanoclusters Boosts Atomic Fe Active Sites on Porous Carbon for the Both Electrocatalytic Oxygen Reduction and CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405157. [PMID: 39126174 DOI: 10.1002/smll.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Electrochemical oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) are greatly significant in renewable energy-related devices and carbon-neutral closed cycle, while the development of robust and highly efficient electrocatalysts has remained challenges. Herein, a hybrid electrocatalyst, featuring axial N-coordinated Fe single atom sites on hierarchically N, P-codoped porous carbon support and Fe nanoclusters as electron reservoir (FeNCs/FeSAs-NPC), is fabricated via in situ thermal transformation of the precursor of a supramolecular polymer initiated by intermolecular hydrogen bonds co-assembly. The FeNCs/FeSAs-NPC catalyst manifests superior oxygen reduction activity with a half-wave potential of 0.91 V in alkaline solution, as well as high CO2 to CO Faraday efficiency (FE) of surpassing 90% in a wide potential window from -0.40 to -0.85 V, along with excellent electrochemical durability. Theoretical calculations indicate that the electron reservoir effect of Fe nanoclusters can trigger the electron redistribution of the atomic Fe moieties, facilitating the activation of O2 and CO2 molecules, lowering the energy barriers for rate-determining step, and thus contributing to the accelerated ORR and CO2RR kinetics. This work offers an effective design of electron coupling catalysts that have advanced single atoms coexisting with nanoclusters for efficient ORR and CO2RR.
Collapse
Affiliation(s)
- Jiaxin He
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Li Xu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Chenchen Qin
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Jian Zhang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Daomeng Liu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Qingyi Li
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Ziyi Feng
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Peigen Liu
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| |
Collapse
|
7
|
Chen Y, Jiang L, Lin S, Dong P, Fu X, Wang Y, Liu Q, Wu M. Carbon-Supported Fe-Based Catalyst for Thermal-Catalytic CO 2 Hydrogenation into C 2+ Alcohols: The Effect of Carbon Support Porosity on Catalytic Performance. Molecules 2024; 29:4628. [PMID: 39407558 PMCID: PMC11477620 DOI: 10.3390/molecules29194628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 10/20/2024] Open
Abstract
Carbon materials supported Fe-based catalysts possess great potential for the thermal-catalytic hydrogenation of CO2 into valuable chemicals, such as alkenes and oxygenates, due to the excellent active sites' accessibility, appropriate interaction between the active site and carbon support, as well as the excellent capacities in C-O bond activation and C-C bond coupling. Even though tremendous progress has been made to boost the CO2 hydrogenation performance of carbon-supported Fe-based catalysts, e.g., additives modification, the choice of different carbon materials (graphene or carbon nanotubes), electronic property tailoring, etc., the effect of carbon support porosity on the evolution of Fe-based active sites and the corresponding catalytic performance has been rarely investigated. Herein, a series of porous carbon samples with different porosities are obtained by the K2CO3 activation of petroleum pitch under different temperatures. Fe-based active sites and the alkali promoter Na are anchored on the porous carbon to study the effect of carbon support porosity on the physicochemical properties of Fe-based active sites and CO2 hydrogenation performance. Multiple characterizations clarify that the bigger meso/macro-pores in the carbon support are beneficial for the formation of the Fe5C2 crystal phase for C-C bond coupling, therefore boosting the synthesis of C2+ chemicals, especially C2+ alcohols (C2+OH), while the limited micro-pores are unfavorable for C2+ chemicals synthesis owing to the sluggish crystal phase evolution and reactants' inaccessibility. We wish our work could enrich the horizon for the rational design of highly efficient carbon-supported Fe-based catalysts.
Collapse
Affiliation(s)
- Yongjie Chen
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Lei Jiang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Simin Lin
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Pei Dong
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Xiaoli Fu
- Shandong Energy Group Co., Ltd., Jinan 250014, China; (X.F.); (Q.L.)
| | - Yang Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| | - Qiang Liu
- Shandong Energy Group Co., Ltd., Jinan 250014, China; (X.F.); (Q.L.)
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.C.); (L.J.); (S.L.)
| |
Collapse
|
8
|
Loi QK, Searles DJ. Reaction Dynamics of CO 2 Hydrogenation on Iron Catalysts Using ReaxFF Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18430-18438. [PMID: 39012085 DOI: 10.1021/acs.langmuir.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The conversion of CO2 to hydrocarbons using catalysts is a promising route to utilize CO2 and produce more valuable chemicals in a sustainable manner. Recent studies have shown that iron-based catalysts perform well for the hydrogenation of CO2. While the hydrogenation reaction mechanism in the gas phase is straightforward, when catalyzed by iron it has been demonstrated to involve various chemical transformations, and the selectivity and conversion are strongly dependent on the particle size. To further investigate the dependence of the reactivity of iron catalysts on cluster size, we performed reactive molecular dynamics simulations using the ReaxFF force field (ReaxFF-MD) for iron nanoclusters of various sizes in a CO2 and H2-rich environment. We demonstrated that the homogeneous hydrogenation of CO2 was correctly described by this ReaxFF model. The dissociation mechanism of CO2 on the Fe4, Fe16 clusters, and the bcc(100) Fe slab agrees with previous DFT results. The ReaxFF-MD simulations suggest a strong dependence of reactivity on the cluster size, with the Fe4 cluster having the highest reactivity. We show that ReaxFF-MD provides a route to understand reaction mechanisms in these nonequilibrium reactive processes where fast processes and local minima are important.
Collapse
Affiliation(s)
- Quang K Loi
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Debra J Searles
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Chen J, Sharapa DI, Plessow PN. Stability of Hydroxylated α-Fe 2O 3(0001) Surfaces. ACS OMEGA 2024; 9:35449-35457. [PMID: 39184516 PMCID: PMC11339807 DOI: 10.1021/acsomega.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 08/27/2024]
Abstract
The stability of hydroxylated terminations of the 0001 surface of α-Fe2O3 (hematite) is investigated computationally using PBE + U calculations with dispersion corrections. Hydroxylated surfaces with low OH concentrations are found to be most stable in a range of the chemical potential of water of -0.95 eV > μH2O > -2.22 eV. These surfaces can be described as isolated Fe(OH)3 groups adsorbed on the dry hematite surface and are predicted to be the exposed termination of the 0001 surface in a wide range of relevant experimental conditions. Most investigated reduced surfaces, containing Fe in oxidation state +2, are only stable in a range of the chemical potential of oxygen μO < -2.44 eV, where bulk hematite is less than magnetite. The only reduced surface stable at a higher μO is derived from the most stable nonreduced hydroxylated surfaces by removing a single OH group per unit cell.
Collapse
Affiliation(s)
- Jiachen Chen
- Institute of Catalysis Research
and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dmitry I. Sharapa
- Institute of Catalysis Research
and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research
and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Wang M, Zheng L, Wang G, Cui J, Guan GL, Miao YT, Wu JF, Gao P, Yang F, Ling Y, Luo X, Zhang Q, Fu G, Cheng K, Wang Y. Spinel Nanostructures for the Hydrogenation of CO 2 to Methanol and Hydrocarbon Chemicals. J Am Chem Soc 2024; 146:14528-14538. [PMID: 38742912 DOI: 10.1021/jacs.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.
Collapse
Affiliation(s)
- Mengheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lanling Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiale Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Ling Guan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu China
| | - Yu-Ting Miao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu China
| | - Jian-Feng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energys, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fan Yang
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yunjian Ling
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Xiangxue Luo
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Najari S, Saeidi S, Sápi A, Szamosvölgyi Á, Papp Á, Efremova A, Bali H, Kónya Z. Synergistic enhancement of CO2 hydrogenation to C5+ hydrocarbons using mixed Fe5C2 and Na-Fe3O4 catalysts: Effects of oxide/carbide ratio, proximity, and reduction. CHEMICAL ENGINEERING JOURNAL 2024; 485:149787. [DOI: 10.1016/j.cej.2024.149787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
12
|
Xu J, Huang W, Li R, Li L, Ma J, Qi J, Ma H, Ruan M, Lu L. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. J Colloid Interface Sci 2024; 655:584-593. [PMID: 37956546 DOI: 10.1016/j.jcis.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
High-selectivity acetylene hydrogenation to produce ethylene is an important issue of removing acetylene impurity in ethylene for industrial polyethylene production. Developing high-efficiency catalyst with excellent ethylene selectivity and catalytic durability is desirable but still challenging. In this work, potassium doped palladium catalysts supported on zirconia with different K contents (Pd/ZrO2-xK) have been developed to catalyze acetylene hydrogenation, the Pd/ZrO2-16K exhibits impressive catalytic performance with acetylene conversion of 100 %, ethylene selectivity of 81 % and high catalytic durability. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) and density functional theory (DFT) calculations reveal that K doping effectively weakens the adsorption of ethylene by regulating the electronic state of catalyst to improve ethylene selectivity and substantially lowers the barriers of hydrogen activation and transfer reactions to favor hydrogen spillover, thus conferring a remarkably improved durability on the Pd/ZrO2-16K catalysts.
Collapse
Affiliation(s)
- Junjie Xu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China
| | - Weixiong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ruiling Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinjin Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaou Qi
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haiyan Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Min Ruan
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China.
| | - Lilin Lu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
13
|
Wang K, Liu N, Wei J, Yu Y, Zhang J, Orege JI, Song L, Ge Q, Sun J. Bifunctional CoFe/HZSM-5 catalysts orient CO 2 hydrogenation towards liquid hydrocarbons. Chem Commun (Camb) 2023; 59:13767-13770. [PMID: 37920957 DOI: 10.1039/d3cc04409b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Converting CO2 to liquid (C5+) hydrocarbons remains a significant hurdle. Our study shows that CoFe/HZSM-5 boosts C5+ selectivity to 73.4%, up from 59% for Fe/HZSM-5. This study highlights the pivotal roles of zeolite acidity and catalyst proximity in this improvement. These insights pave the way for more effective CO2 utilization.
Collapse
Affiliation(s)
- Kai Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Yu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jixin Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Joshua Iseoluwa Orege
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifei Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
14
|
Gong N, Zhang T, Tan M, Wang L, Yang J, Tan L, Yang G, Wu P, Wu Y, Tan Y. Realizing and Revealing Complex Isobutyl Alcohol Production over a Simple Cu–ZrO 2 Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Nana Gong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Minghui Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Liyan Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqian Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Tan
- Institute of Molecular Catalysis and In Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Guohui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Peng Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingquan Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
15
|
Schmidt C, Kureti S. CO
2
Conversion by Fischer‐Tropsch Synthesis Using Na‐Modified Fe Catalysts. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Schmidt
- TU Bergakademie Freiberg Institute of Energy Process Engineering and Chemical Engineering, Chair of Reaction Engineering Fuchsmühlenweg 9 09599 Freiberg Germany
| | - Sven Kureti
- TU Bergakademie Freiberg Institute of Energy Process Engineering and Chemical Engineering, Chair of Reaction Engineering Fuchsmühlenweg 9 09599 Freiberg Germany
| |
Collapse
|