1
|
Ono T, Ooyama Y. Axial and helical chirality in multinuclear group 13 complexes: pathways to functional optical materials. Dalton Trans 2025; 54:6361-6368. [PMID: 40100060 DOI: 10.1039/d5dt00230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Main-group element complexes have emerged as promising functional dyes owing to their unique photophysical properties and potential applications in sensors, luminescent devices, and photocatalysis. Among these, multinuclear main-group complexes that incorporate multiple elements within a single ligand have garnered significant attention, particularly for their ability to exhibit chirality with optical functions. Axial and helical chirality, resulting from unique coordination geometries, represent a critical frontier in the design of functional materials. These complexes enable diverse functionalities, including circular dichroism and circularly polarized luminescence. This Frontier article highlights recent advances in the synthesis of multinuclear main-group element complexes with chirality, focusing on their structural uniqueness and photochemical characteristics. Particular emphasis is placed on group 13 element complexes, including boron(III), aluminum(III), gallium(III), and indium(III), which exhibited unique chiral properties and photophysical behaviors. Key topics include the design strategies for chiral multinuclear frameworks, their photophysical properties, and their integration into advanced functional materials.
Collapse
Affiliation(s)
- Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan.
| |
Collapse
|
2
|
Szejko V, Justyniak I, Jędrzejewska M, Jędrzejczyk G, Precht TL, Kubas A, Wheatley AEH, Lewiński J. Luminescent Alkylaluminium Anthranilates Reaching Unity Quantum Yield in the Condensed Phase. Angew Chem Int Ed Engl 2025:e202501985. [PMID: 39973663 DOI: 10.1002/anie.202501985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/21/2025]
Abstract
Transition, post-transition and rare earth metal complexes supported by (O,N)- and (N,N)-type ligands dominate organometallic photochemistry. However, despite a vast number of aminobenzoate metal complexes having been reported, and aluminium being globally abundant, alkylaluminium anthranilates have not yet been considered as effective luminophores. Herein, using a family of commercially available ligands composed of anthranilic acid (anth-H2) and its N-substituted derivatives, we report the isolation and characterisation of a series of unique tetrameric chiral-at-metal alkylaluminium anthranilates, [(R'-anth)AlR]4. The resulting compounds are characterised using spectroscopic methods and single-crystal X-ray diffraction to analyse structure-determining factors in the solid state and solution. Moreover, by changing the N-substituents from H to Me and Ph, we have yielded a series of luminophores that exhibit poor-to-excellent performance, providing a [(Ph-anth)AlEt]4 derivative that achieves a unity photoluminescence quantum yield in the condensed phase, which is unprecedented for aluminium complexes.
Collapse
Affiliation(s)
- Vadim Szejko
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maria Jędrzejewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Grzegorz Jędrzejczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Thea-Luise Precht
- Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, CB2 1EW, United Kingdom
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Andrew E H Wheatley
- Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, CB2 1EW, United Kingdom
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
3
|
Caliskanyürek V, Riabchunova A, Kupfer S, Ma F, Wang JW, Karnahl M. Exploring the Potential of Al(III) Photosensitizers for Energy Transfer Reactions. Inorg Chem 2024; 63:15829-15840. [PMID: 39132844 DOI: 10.1021/acs.inorgchem.4c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Three homoleptic Al(III) complexes (Al1-Al3) with different degrees of methylation at the 2-pyridylpyrrolide ligand were systematically tested for their function as photosensitizers (PS) in two types of energy transfer reactions. First, in the generation of reactive singlet oxygen (1O2), and second, in the isomerization of (E)- to (Z)-stilbene. 1O2 was directly evidenced by its characteristic NIR emission at around 1276 nm and indirectly by the reaction with an organic substrate [e.g. 2,5-diphenylfuran (DPF)] using in situ UV/vis spectroscopy. In a previous study, the presence of additional methyl groups was found to be beneficial for the photocatalytic reduction of CO2 to CO, but here Al1 without any methyl groups exhibits superior performance. To rationalize this behavior, a combination of photophysical experiments (absorption, emission and excited state lifetimes) together with photostability measurements and scalar-relativistic time-dependent density functional theory calculations was applied. As a result, Al1 exhibited the highest emission quantum yield (64%), the longest emission lifetime (8.7 ns) and the best photostability under the reaction conditions required for the energy transfer reactions (e.g. in aerated chloroform). Moreover, Al1 provided the highest rate constant (0.043 min-1) for the photocatalytic oxygenation of DPF, outperforming even noble metal-based competitors such as [Ru(bpy)3]2+. Finally, its superior photostability enabled a long-term test (7 h), in which Al1 was successfully recycled seven times, underlining the high potential of this new class of earth-abundant PSs.
Collapse
Affiliation(s)
- Volkan Caliskanyürek
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Anastasiia Riabchunova
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Hua Z, Wang L, Gong S, Tian Y, Fu H. Recent strategies for triplet-state emission regulation toward non-lead organic-inorganic metal halides. Chem Commun (Camb) 2024; 60:7246-7265. [PMID: 38916248 DOI: 10.1039/d4cc01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Organic-inorganic metal halides (OIMHs) have strengthened the development of triplet-state emission materials due to their excellent luminescence performance. Due to the inherent toxicity of lead (Pb) significantly limiting its further advancement, numerous studies have been conducted to regulate triplet-state emission of non-Pb OIMHs, and several feasible strategies have been proposed. However, most of the non-Pb OIMHs reported have a relatively short lifetime or a low luminescence efficiency, not in favor of their application. In this review, we provide a summary of recent reports on the regulation of triplet-state emissions in non-Pb OIMHs to provide benefits for the design of innovative luminescent materials. Our focus is primarily on exploring the internal and external factors that influence the triplet-state emission. Starting from the luminescence mechanism, the current strategies for regulating triplet-state emissions are summarized. Moreover, by manipulating these strategies, it becomes feasible to achieve triplet-state emissions that span a range of colors from blue to red, and even extend into the near-infrared spectrum with high luminescence efficiency, while also increasing their lifetimes. This review not only provides fresh insights into the advancement of triplet-state emissions in OIMHs but also integrates experimental and theoretical perspectives to illuminate the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Zhaorui Hua
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Lingyi Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Shuyan Gong
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
5
|
Konishi Y, Ehara T, Cui L, Ueno K, Ishigaki Y, Harada T, Konta T, Onda K, Hoshino Y, Miyata K, Ono T. Optical Property Control by the Interligand Charge Transfer Excited State in Brominated Homoleptic and Heteroleptic Aluminum Dinuclear Triple-Stranded Helicates. Inorg Chem 2024; 63:11716-11725. [PMID: 38859752 DOI: 10.1021/acs.inorgchem.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The utilization of aluminum, an abundant and inexpensive element, for the synthesis of novel functional complexes is extremely important, but the design and control of photofunctionality are still unexplored. In this study, we focused on our previously developed dinuclear triple-stranded helicates incorporating two aluminum ions (ALPHY) to synthesize both homoleptic and heteroleptic complexes with bromine atoms at the 3-position of the pyrrole moiety in the Schiff base ligands. The brominated Schiff base ligands were reacted with AlCl3 to synthesize homoleptic complexes, while different ligands were mixed to prepare heteroleptic complexes. Single-crystal X-ray structural analysis revealed the structures of these novel complexes. We found that increasing the degree of bromination resulted in a tunable emission color, shifting progressively from 550 (yellow) to 566 nm (orange). Optical resolution of the complexes facilitated the observation of mirror-image circular dichroism and circularly polarized luminescence. Furthermore, employing ultrafast spectroscopy techniques, we have elucidated that the optical properties are governed by the interligand charge transfer (ILCT) among the three ligands. The formation of heteroleptic complexes induces the ILCT state even in nonpolar environments, thereby accelerating nonradiative decay and intersystem crossing. These findings mark significant advancements in photofunctional materials based on multinuclear complexes.
Collapse
Affiliation(s)
- Yuto Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Ehara
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Luxia Cui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kodai Ueno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita City 870-1192, Japan
| | - Takeru Konta
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita City 870-1192, Japan
| | - Ken Onda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Wenzel JO, Werner J, Allgaier A, van Slageren J, Fernández I, Unterreiner AN, Breher F. Visible-Light Activation of Diorganyl Bis(pyridylimino) Isoindolide Aluminum(III) Complexes and Their Organometallic Radical Reactivity. Angew Chem Int Ed Engl 2024; 63:e202402885. [PMID: 38511969 DOI: 10.1002/anie.202402885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
We report on the synthesis and characterization of a series of (mostly) air-stable diorganyl bis(pyridylimino) isoindolide (BPI) aluminum complexes and their chemistry upon visible-light excitation. The redox non-innocent BPI pincer ligand allows for efficient charge transfer homolytic processes of the title compounds. This makes them a universal platform for the generation of carbon-centered radicals. The photo-induced homolytic cleavage of the Al-C bonds was investigated by means of stationary and transient UV/Vis spectroscopy, spin trapping experiments, as well as EPR and NMR spectroscopy. The experimental findings were supported by quantum chemical calculations. Reactivity studies enabled the utilization of the aluminum complexes as reactants in tin-free Giese-type reactions and carbonyl alkylations under ambient conditions, which both indicated radical-polar crossover behavior. A deeper understanding of the physical fundamentals and photochemical process was provided, furnishing in turn a new strategy to control the reactivity of bench-stable aluminum organometallics.
Collapse
Affiliation(s)
- Jonas O Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Johannes Werner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Alexander Allgaier
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Israel Fernández
- Universidad Complutense de Madrid, Facultad de Ciencias Químicas, 28040, Madrid, Spain
| | - Andreas-Neil Unterreiner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Ueno K, Konishi Y, Cui L, Harada T, Ishibashi K, Konta T, Muranaka A, Hisaeda Y, Hoshino Y, Ono T. Unraveling the Remarkable Influence of Substituents on the Emission Variation and Circularly Polarized Luminescence of Dinuclear Aluminum Triple-Stranded Helicates. Inorg Chem 2024; 63:6296-6304. [PMID: 38526299 DOI: 10.1021/acs.inorgchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study explored the development of functional dyes using aluminum, focusing on aluminum-based dinuclear triple-stranded helicates, and examined the effects of substituent variations on their structural and optical properties. Key findings revealed that the modification of methyl groups to the pyrrole positions significantly extended the conjugation system, resulting in a red shift in the absorption and emission spectra. Conversely, the modification of methyl groups at the methine positions due to steric hindrances increased the torsion angle of the ligands, leading to a blue shift in the absorption and emission spectra. A common feature across all complexes was that in the excited state, one of the three ligands underwent significant structural relaxation. This led to a pronounced Stokes shift and minimal spectra overlap with high photoluminescence behaviors. Moreover, our research extended to the optical resolution of the newly synthesized complexes by analyzing the chiroptical properties of the resulting enantiomers, including their circular dichroism and circularly polarized luminescence. These insights offer valuable contributions to the design and application of novel aluminum-based functional dyes, potentially influencing a range of fields, from materials science to optoelectronics.
Collapse
Affiliation(s)
- Kodai Ueno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Luxia Cui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takeru Konta
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Atsuya Muranaka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Erlemeier L, Müller MJ, Stuhrmann G, Dunaj T, Werncke G, Chatterjee S, von Hänisch C. Easy access to strongly fluorescent higher homologues of BODIPY. Dalton Trans 2024; 53:887-893. [PMID: 38169004 DOI: 10.1039/d3dt03323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present the easy and high yield synthesis of several group 13 MesDPM compounds (Al-In) with alkyl substituents at the metal atom. All these compounds were fully characterized using techniques including X-ray diffraction analysis and photoluminescence measurements. It shows that for aluminium and gallium pronounced green fluorescence is observed, which is absent for indium. DFT calculations confirm that the first electronic transition corresponds to a ligand-based π-π* transition.
Collapse
Affiliation(s)
- Lukas Erlemeier
- Department of Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | - Marius J Müller
- Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gina Stuhrmann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Germany
| | - Tobias Dunaj
- Department of Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | - Gunnar Werncke
- Department of Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | - Sangam Chatterjee
- Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carsten von Hänisch
- Department of Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| |
Collapse
|
9
|
Wang JW, Ma F, Jin T, He P, Luo ZM, Kupfer S, Karnahl M, Zhao F, Xu Z, Jin T, Lian T, Huang YL, Jiang L, Fu LZ, Ouyang G, Yi XY. Homoleptic Al(III) Photosensitizers for Durable CO 2 Photoreduction. J Am Chem Soc 2023; 145:676-688. [PMID: 36538810 DOI: 10.1021/jacs.2c11740] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exploiting noble-metal-free systems for high-performance photocatalytic CO2 reduction still presents a key challenge, partially due to the long-standing difficulties in developing potent and durable earth-abundant photosensitizers. Therefore, based on the very cheap aluminum metal, we have deployed a systematic series of homoleptic Al(III) photosensitizers featuring 2-pyridylpyrrolide ligands for CO2 photoreduction. The combined studies of steady-state and time-resolved spectroscopy as well as quantum chemical calculations demonstrate that in anerobic CH3CN solutions at room temperature, visible-light excitation of the Al(III) photosensitizers leads to an efficient population of singlet excited states with nanosecond-scale lifetimes and notable emission quantum yields (10-40%). The results of transient absorption spectroscopy further identified the presence of emissive singlet and unexpectedly nonemissive triplet excited states. More importantly, the introduction of methyl groups at the pyrrolide rings can greatly improve the visible-light absorption, reducing power, and durability of the Al(III) photosensitizers. With triethanolamine, BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole), and an Fe(II)-quaterpyridine catalyst, the most methylated Al(III) photosensitizer achieves an apparent quantum efficiency of 2.8% at 450 nm for selective (>99%) CO2-to-CO conversion, which is nearly 28 times that of the unmethylated one (0.1%) under identical conditions. The optimal system realizes a maximum turnover number of 10250 and higher robustness than the systems with Ru(II) and Cu(I) benchmark photosensitizers. Quenching experiments using fluorescence spectroscopy elucidate that the photoinduced electron transfer in the Al(III)-sensitized system follows a reductive quenching pathway. The remarkable tunability and cost efficiency of these Al(III) photosensitizers should allow them as promising components in noble-metal-free systems for solar fuel conversion.
Collapse
Affiliation(s)
- Jia-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona43007, Spain
| | - Fan Ma
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Tao Jin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia30322, United States
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Zhi-Mei Luo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona43007, Spain
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena07743, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Fengyi Zhao
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia30322, United States
| | - Zihao Xu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia30322, United States
| | - Tao Jin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia30322, United States
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou515041, China
| | - Long Jiang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou510275, China
| | - Li-Zhi Fu
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou510275, China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| |
Collapse
|