1
|
Jin H, Liu F, Wu P, Sun Z, Sui P, Cao Y, Zhou Y, Lin S. Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408147. [PMID: 39780532 DOI: 10.1002/smll.202408147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm. The photoisomerization of azobenzene moiety facilitates a reversible structural transformation from isotropic peptoidosomes to anisotropic 1D helical nanoribbons (≈80 nm width) under the alternating irradiation with UV and visible lights, consequently leading to the chirality expression and transfer from chiral asymmetric center to achiral azobenzene units. As a biomimetic model with deformation-induced energy transfer, a non-invasive azobenzene-based Förster resonance energy transfer system is unprecedentedly constructed via the introduction of a fluorescent donor of pyrene derivatives and sequentially photo-regulated the donor/acceptor ratio, displaying a reversible gradient fluorescent color variation from blue to yellow (a broad Stokes shift of ≈200 nm) and a high-efficient energy transfer efficiency of 97.2%. The photo-controllable photoluminescence phenomenon endows these chiral aggregates with a proof-of-concept application on multi-colored information encryption. This work provides a prospective strategy to fabricate stimuli-responsive chiral biomimetic materials with a potential on the light-controllable switches.
Collapse
Affiliation(s)
- Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengchao Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zichao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengliang Sui
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Cao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongfeng Zhou
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Zhu YQ, Chen Z, Chen ZY, Zhou ZW, Bai Q, Wu MX, Wang XH. Discrete Macrocyclic Polymer Hosts-Induced Cascade Luminescence Enhancement and Application in Bioimaging. Chemistry 2024; 30:e202402808. [PMID: 39207820 DOI: 10.1002/chem.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The integration of polymers, supramolecular macrocycles and aggregation-induced emission (AIE) molecules provides numerous possibilities for constructing various functional supramolecular systems. Herein, we constructed supramolecular assembled systems based on discrete macrocyclic polymer hosts via the cooperation of hydra-headed macrocycles containing two or three pillar[5]arene units (defined as P2, P3), the block polymer F127 and AIE molecules (alkyl-cyano modified tetraphenylethene, alkyl-triazole-cyano modified 9,10-distyrylanthracene, defined as TPE-(CN)4 and DSA-(TACN)2). Compared with the binary assembly between hydra-headed hosts or F127 and AIE molecules, cascaded supramolecular assembly-induced emission enhancement (SAIEE) in aqueous solution was achieved in discrete macrocyclic polymer-based supramolecular assembled systems. Considering the cascaded SAIEE performance, we have successfully applied discrete macrocyclic polymer-based supramolecular assembled systems to bioimaging and constructed an artificial light-harvesting system (LHs) to explore more potential applications. The supramolecular assembly form of discrete macrocyclic polymers hosts and AIE molecules proposed in this work provides new inspiration for the construction and application of high-performance supramolecular luminescent systems.
Collapse
Affiliation(s)
- Yu-Qi Zhu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhaojun Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhong-Yuan Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhi-Wei Zhou
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Qian Bai
- Center for Medical Experiment, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, P. R. China
| | - Ming-Xue Wu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Xing-Huo Wang
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Zhang B, Zhong Q, Xie Y, Hu L, Wang Y, Bai G. A sodium carboxymethyl cellulose-induced emission and gelation system for time-dependent information encryption and anti-counterfeiting. J Colloid Interface Sci 2024; 663:707-715. [PMID: 38432169 DOI: 10.1016/j.jcis.2024.02.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Many lanthanide complexes do not form gel or even exhibit characteristic luminescence of lanthanide ions, which limits their applications in many fields. Therefore, there is an urgent need for a third component that can not only promote emission but also gel the lanthanide complex system to construct new smart materials such as time-dependent information encryption and anti-counterfeiting materials. Herein, a luminescent lanthanide metallogel was successfully prepared by using the third component sodium carboxymethyl cellulose (NaCMC) to induce the gelation and luminescence of the complex (H3L/Tb3+) of 4,4',4″-((benzene-1,3,5-tricarbonyl)tris(azanediyl)) tris(2-hydroxybenzoic acid) (H3L) and Tb3+. The H3L/Tb3+ complex itself does not form gel and has no characteristic luminescence of Tb3+. Moreover, the multicolor emission of H3L/Tb3+/NaCMC gels was prepared based on Förster resonance energy transfer (FRET) platforms to obtain a high-security level information encryption and anti-counterfeiting materials. These multicolor emission gels exhibit emission color tunability with time dependence due to the different energy transfer efficiencies at each pH node controlled by glucono-δ-lactone hydrolysis time. Based on the time response characteristics, the time-dependent information encryption and anti-counterfeiting materials are developed.
Collapse
Affiliation(s)
- Binbin Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Qilin Zhong
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yuhang Xie
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Linfeng Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
4
|
Liu X, Hu J, Yang J, Peng L, Tang J, Wang X, Huang R, Liu J, Liu K, Wang T, Liu X, Ding L, Fang Y. Fully Reversible and Super-Fast Photo-Induced Morphological Transformation of Nanofilms for High-Performance UV Detection and Light-Driven Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307165. [PMID: 38225747 PMCID: PMC10966555 DOI: 10.1002/advs.202307165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Flexible and highly ultraviolet (UV) sensitive materials garner considerable attention in wearable devices, adaptive sensors, and light-driven actuators. Herein, a type of nanofilms with unprecedented fully reversible UV responsiveness are successfully constructed. Building upon this discovery, a new system for ultra-fast, sensitive, and reliable UV detection is developed. The system operates by monitoring the displacement of photoinduced macroscopic motions of the nanofilms based composite membranes. The system exhibits exceptional responsiveness to UV light at 375 nm, achieving remarkable response and recovery times of < 0.3 s. Furthermore, it boasts a wide detection range from 2.85 µW cm-2 to 8.30 mW cm-2, along with robust durability. Qualitative UV sensing is accomplished by observing the shape changes of the composite membranes. Moreover, the composite membrane can serve as sunlight-responsive actuators for artificial flowers and smart switches in practical scenarios. The photo-induced motion is ascribed to the cis-trans isomerization of the acylhydrazone bonds, and the rapid and fully reversible shape transformation is supposed to be a synergistic result of the instability of the cis-isomers acylhydrazone bonds and the rebounding property of the networked nanofilms. These findings present a novel strategy for both quantitative and qualitative UV detection.
Collapse
Affiliation(s)
- Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jiahui Hu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
- Xi'an Rare Matel Materials Institute Co. LtdXi'an710016China
| | - Xiaohui Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jianfei Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
- Northwest Institute for Nonferrous Metal ResearchXi'an710016China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Tingyi Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| |
Collapse
|
5
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
6
|
Mu B, Hao X, Luo X, Yang Z, Lu H, Tian W. Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform. Nat Commun 2024; 15:903. [PMID: 38291054 PMCID: PMC10827788 DOI: 10.1038/s41467-024-45252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Light-harvesting is an indispensable process in photosynthesis, and researchers have been exploring various structural scaffolds to create artificial light-harvesting systems. However, achieving high donor/acceptor ratios for efficient energy transfer remains a challenge as excitons need to travel longer diffusion lengths within the donor matrix to reach the acceptor. Here, we report a polymeric supramolecular column-based light-harvesting platform inspired by the natural light-harvesting of purple photosynthetic bacteria to address this issue. The supramolecular column is designed as a discotic columnar liquid crystalline polymer and acts as the donor, with the acceptor intercalated within it. The modular columnar design enables an ultrahigh donor/acceptor ratio of 20000:1 and an antenna effect exceeding 100. Moreover, the spatial confinement within the supramolecular columns facilitates control over the energy transfer process, enabling dynamic full-color tunable emission for information encryption applications with spatiotemporal regulation security.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao Luo
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhongke Yang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
7
|
Zhang D, Li M, Jiang B, Liu S, Yang J, Yang X, Ma K, Yuan X, Yi T. Three-step cascaded artificial light-harvesting systems with tunable efficiency based on metallacycles. J Colloid Interface Sci 2023; 652:1494-1502. [PMID: 37659317 DOI: 10.1016/j.jcis.2023.08.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
It is still challenging to develop multi-step cascaded artificial light-harvesting systems (ALHSs) with tunable efficiency. Here, we designed novel cascaded ALHSs with AIE-active metallacycles as the light-harvesting antenna, Eosin Y (ESY) and sulforhodamine 101 (SR101) as conveyors, near-infrared emissive chlorin-e6 (Ce6) as the final acceptor. The close contact and fair spectral overlap between donor and acceptor molecules at each level ensured the efficient sequential three-step energy transfer. The excited energy was sequentially and efficiently funneled to Ce6 along the cascaded line MTPEPt1 → ESY → SR101 → Ce6. Additionally, a unique strategy for regulating the efficiency of ALHS was illustrated by adjusting hydrophilic and hydrophobic interactions.
Collapse
Affiliation(s)
- Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China.
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Jie Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Ke Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaojuan Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
8
|
Cheng Q, Ma XK, Zhou X, Zhang YM, Liu Y. Polymerization Based on Modified β-Cyclodextrin Achieves Efficient Phosphorescence Energy Transfer for Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309732. [PMID: 38054610 DOI: 10.1002/smll.202309732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Supramolecular polymerization can not only activate guest phosphorescence, but also promote phosphorescence Förster resonance energy transfer and induce effective delayed fluorescence. Herein, the solid supramolecular assemblies of ternary copolymers based on acrylamide, modified β-cyclodextrin (CD), and carbazole (CZ) are reported. After doping with polyvinyl alcohol (PVA) and dyes, a NIR luminescence supramolecular composite with a lifetime of 1.07 s, an energy transfer efficiency of up to 97.4% is achieved through tandem phosphorescence energy transfer. The ternary copolymers can realize macrocyclic enrichment of dyes in comparison to CZ and acrylamide copolymers without CD, which can facilitate energy transfer between triplet and singlet with a high donor-acceptor ratio. Additionally, the flexible polymeric films exhibit regulable lifetime, tunable luminescence color, and repeatable switchable afterglow by adjusting the excitation wavelength, donor-acceptor ratio, and wet/dry stimuli. The luminescence materials are successfully applied to information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Qingwen Cheng
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Kun Ma
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaolu Zhou
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Wang N, Yang W, Feng L, Xu XD, Feng S. A supramolecular artificial light-harvesting system based on a luminescent platinum(II) metallacage. Dalton Trans 2023; 52:15524-15529. [PMID: 37622328 DOI: 10.1039/d3dt01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A trigonal luminescent metallacage was constructed by the coordination-driven self-assembly of m-pyridine-modified tetraphenylene ligands with organic Pt(II) acceptors, which exhibited excellent Aggregation-Induced Emission (AIE) properties. An efficient artificial light-harvesting system was successfully constructed by selecting the metallacage as the donor and the hydrophobic fluorescent dye Nile Red (NiR) as the donor molecule in a system of acetone/water (1/9, v/v), The absorption spectra of NiR and the emission spectra of the metallacage showed considerable overlap, achieving energy transfer from the metallacage to NiR.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Weiao Yang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Lei Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
10
|
Chen M, Lu Z, Li M, Jiang B, Liu S, Li Y, Zhang B, Li X, Yi T, Zhang D. Near-Infrared Emissive Cascaded Artificial Light-Harvesting System with Enhanced Antibacterial Efficiency. Adv Healthc Mater 2023; 12:e2300377. [PMID: 37122070 DOI: 10.1002/adhm.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Indexed: 05/02/2023]
Abstract
Combination of platinum(II) metallacycles and photodynamic inactivation presents a promising antibacterial strategy. Herein, a cascaded artificial light-capturing system is developed in which an aggregation-induced emission-active platinum(II) metallacycle (PtTPEM) is utilized as the antenna, sulforhodamine 101 (SR101) as a key conveyor, and the near-infrared emissive photosensitizer Chlorin-e6 (Ce6) as the final energy acceptor. The well-dispersed Ce6 in the proximity of energy donors not only avoids self-quenching in the physiological environment but also contributes to energy transfer from donor to acceptor, thereby significantly improving the 1 O2 generation ability of the light-harvesting system under white light irradiation. By integrating the platinum(II) metallacycle and 1 O2 , a more efficient synergistic antibacterial effect is achieved at low concentrations, along with a significant decrease in dark toxicity caused by PtTPEM.
Collapse
Affiliation(s)
- Maowen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yinuo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bangrui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xianying Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
Ren Z, Xu G, Wang B, Song S, Hao T, Liu D, Zhang Y, Zhao J, Zhang L, Li Y. Polyaniline-Based Infrared Dynamic Patterned Encoder with Multiple Thermal Radiation Characteristics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884015 DOI: 10.1021/acsami.2c19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A high-level infrared dynamic patterned encoder (IR-DPE) possesses prospective applications for energy-harvesting and information, but a simple and reliable method for fabrication remains challenging. Herein, we first report an IR-DPE with multiple thermal radiation characteristics based on polyaniline (PANI). Specifically, the electron-beam evaporation technique is introduced to obtain the divanadium pentoxide (V2O5) coating, and then the V2O5 film acts as an oxidant to drive in situ polymerization of the PANI film. During the process, we experimentally explore the relationship between the thickness of V2O5 and the emissivity of PANI to obtain up to six emissivity levels and achieve the IR pattern integrated into multiple thermal radiation characteristics. The device shows multiple thermal radiation characteristics at the oxidized state, realizing a pattern visible with the IR camera and the same thermal radiation properties at the reduced state, leading to the pattern concealed in the IR regime. In addition, the highest emissivity tunability of the device is to be tuned from 0.40 to 0.82 (Δε = 0.42) at 2.5-25 μm. Meanwhile, the device exhibits a maximum temperature control of up to 5.9 °C. The results show the enormous potential of IR-DPEs for IR information transfer and thermal management.
Collapse
Affiliation(s)
- Zichen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Gaoping Xu
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Bo Wang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shanshan Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tingting Hao
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dongqi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yike Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Leipeng Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
12
|
Jiahong L, Jialu S, Chenhui P, Guoze Y. The Materials and Application of Artificial Light Harvesting System Based on Supramolecular Self‐assembly. ChemistrySelect 2023. [DOI: 10.1002/slct.202202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liu Jiahong
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Sun Jialu
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Pan Chenhui
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Yang Guoze
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| |
Collapse
|
13
|
Chen XM, Cao KW, Bisoyi HK, Zhang S, Qian N, Guo L, Guo DS, Yang H, Li Q. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204360. [PMID: 36135778 DOI: 10.1002/smll.202204360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Dynamic sequential control of photoluminescence by supramolecular approaches has become a great issue in supramolecular chemistry. However, developing a systematic strategy to construct polychromatic photoluminescent supramolecular self-assemblies for improving the efficiency and sensitivity of artificial light-harvesting systems still remains a challenge. Here, a series of amphiphilicity-controlled supramolecular self-assemblies with polychromatic fluorescence based on lower-rim hexyl-modified sulfonatocalix[4]arene (SC4A6) and N-alkyl-modified p-phenylene divinylpyridiniums (PVPn, n = 2-7) as efficient light-harvesting platforms is reported. PVPn shows wide ranges of polychromatic fluorescence by co-assembling with SC4A6, whose emission trends significantly depend on the modified alkyl-chains of PVPn. The formed PVPn-SC4A6 co-assemblies as light-harvesting platforms are extremely sensitive for transferring the energy to two near-infrared emissive acceptors, Nile blue (NiB) and Rhodamine 800. After optimizing the amphiphilicity of PVPn-SC4A6 systems, the PVPn-SC4A6-NiB light-harvesting systems achieve an ultrasensitive working concentration for NiB (2 nm) and an ultrahigh antenna effect up to 91.0. Furthermore, the two different kinds of light-harvesting nanoparticles exhibit good performance on near-infrared imaging in the Golgi apparatus and mitochondria, respectively.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Ke-Wei Cao
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Nina Qian
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Lingxiang Guo
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|