1
|
Ma C, Fu C, Cen Z, Huang K, Lu X, Wu X. B/Pd Synergistic Catalysis for the Decarboxylative Allylation of 2-(2-Azaaryl)acetic Acids. J Org Chem 2024; 89:14558-14563. [PMID: 39269172 DOI: 10.1021/acs.joc.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We describe an allylation reaction between 2-(2-azaaryl)acetic acids and allylic electrophiles catalyzed synergistically by a dual system consisting of borinic acid and a Pd complex under mild conditions. The decarboxylative allylation proceeds via a boron-bound enamine intermediate, which then interacts with a π-allylpalladium intermediate from the allylic electrophile. High yields of diallylation products highlight the method's efficiency. Intriguingly, when using 2-(2-pyridyl)acetic acid with a C3 substituent on the pyridyl ring, the reaction exclusively yields monoallylation products.
Collapse
Affiliation(s)
- Chicheng Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, China
| | - Chao Fu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, China
| | - Zhihe Cen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, China
| | - Kai Huang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, China
| | - Xuehe Lu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Lu, Shanghai 200444, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, China
| |
Collapse
|
2
|
Sun Y, Newhouse T. α,β-Dehydrogenation Adjacent to Sulfur- and Phosphorus- Containing Compounds. Angew Chem Int Ed Engl 2024:e202411859. [PMID: 39264684 DOI: 10.1002/anie.202411859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Here, we report a robust nickel-catalyzed α,β-dehydrogenation process designed for substrates that contain electron-withdrawing sulfur and phosphorus groups. Leveraging the formation of organozinc intermediates and the utilization of a mild oxidant, allyl methyl carbonate, this methodology exhibits remarkable efficiency and outstanding diastereoselectivities across a diverse array of substrates, achieving E : Z ratios exceeding 20 : 1. Investigation through deuterium incorporation studies and an analysis of the reaction sequence leading to the formation of the dehydrogenative allylation side product, provide useful insights into reaction optimization.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut, 06520-8107, United States
| | - Timothy Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut, 06520-8107, United States
| |
Collapse
|
3
|
Kaur M, Cooper JC, Van Humbeck JF. Site-selective benzylic C-H hydroxylation in electron-deficient azaheterocycles. Org Biomol Chem 2024; 22:4888-4894. [PMID: 38819259 DOI: 10.1039/d4ob00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Benzylic C-H bonds can be converted into numerous functional groups, often by mechanisms that involve hydrogen atom transfer as the key bond breaking step. The abstracting species is most often an electrophilic radical, which makes these reactions best suited to electron-rich C-H bonds to achieve appropriate polarity matching. Thus, electron deficient systems such as pyridine and pyrimidine are relatively unreactive, and therefore underrepresented in substrate scopes. In this report, we describe a new method for heterobenzylic hydroxylation-essentially an unknown reaction in the case of pyrimidines-that makes use of an iodine(III) reagent to afford very high selectivity towards electron-deficient azaheterocycles in substrates with more than one reactive position and prevents over-oxidation to carbonyl products. The identification of key reaction byproducts supports a mechanism that involves radical coupling in the bond forming step.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Julian C Cooper
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
4
|
Long T, Zeng YL, Dong ZH, Li S, Zhan J, Zeng SM, Qiu JL, Chu WD, Liu QZ. Nickel-Catalyzed Three-Component Alkylarylation of Alkenyl N-Heteroarenes. Org Lett 2023; 25:8344-8349. [PMID: 37962415 DOI: 10.1021/acs.orglett.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A nickel-catalyzed three-component alkylarylation of alkenyl N-heteroarenes with α-bromocarboxylates and aryl boronic acids is reported. The protocol provides a new method to access a variety of N-heteroarene substituted diarylalkanes in moderate to good yields. It features mild reaction conditions, cheap nickel catalyst, readily available substrates, and broad substrate scope.
Collapse
Affiliation(s)
- Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Ya-Li Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Sheng-Min Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jia-Li Qiu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| |
Collapse
|
5
|
Shivers GN, Pigge FC. Palladium-catalyzed allylation of 2- and 4-alkylpyridines via N-allyl alkylidene dihydropyridine intermediates. Tetrahedron Lett 2023; 128:154701. [PMID: 37841749 PMCID: PMC10569290 DOI: 10.1016/j.tetlet.2023.154701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A method to introduce allyl or cinnamyl groups to the picolyl positions of 2- or 4-alkylpyridines is described. Substituted N-allyl pyridinium salts are first treated with base (KOtBu) followed by catalytic [(η3-allyl)PdCl]2 and PPh3 to result in formal Pd-catalyzed transfer of N-allyl groups to the pyridine periphery. The reaction is believed to proceed through initial formation of nucleophilic alkylidene dihydropyridine intermediates that react with (π-allyl)Pd(II) electrophiles, thereby regenerating N-allyl pyridinium cations. Catalytic turnover and liberation of pyridine products is then achieved by oxidative addition of Pd(0) to these activated allyl groups.
Collapse
Affiliation(s)
- Grant N Shivers
- Department of Chemistry, University of Iowa Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
6
|
Maity S, Lopez MA, Bates DM, Lin S, Krska SW, Stahl SS. Polar Heterobenzylic C(sp 3)-H Chlorination Pathway Enabling Efficient Diversification of Aromatic Nitrogen Heterocycles. J Am Chem Soc 2023; 145:19832-19839. [PMID: 37642292 PMCID: PMC10629438 DOI: 10.1021/jacs.3c05822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Site-selective radical reactions of benzylic C-H bonds are now highly effective methods for C(sp3-H) functionalization and cross-coupling. The existing methods, however, are often ineffective with heterobenzylic C-H bonds in alkyl-substituted pyridines and related aromatic heterocycles that are prominently featured in pharmaceuticals and agrochemicals. Here, we report new synthetic methods that leverage polar, rather than radical, reaction pathways to enable the selective heterobenzylic C-H chlorination of 2- and 4-alkyl-substituted pyridines and other heterocycles. Catalytic activation of the substrate with trifluoromethanesulfonyl chloride promotes the formation of enamine tautomers that react readily with electrophilic chlorination reagents. The resulting heterobenzyl chlorides can be used without isolation or purification in nucleophilic coupling reactions. This chlorination-diversification sequence provides an efficient strategy to achieve heterobenzylic C-H cross-coupling with aliphatic amines and a diverse collection of azoles, among other coupling partners.
Collapse
Affiliation(s)
- Soham Maity
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Marco A. Lopez
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shishi Lin
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Murugesan T, Elikkottil A, Kaliyamoorthy A. Palladium-Catalyzed Regioselective C3-Allylic Alkylation of 2-Aryl Imidazopyridines with MBH Carbonates. J Org Chem 2023; 88:2655-2665. [PMID: 36719167 DOI: 10.1021/acs.joc.2c03001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Imidazopyridine is an important framework that constitutes several pharmaceutical drugs and biologically active molecules. Herein, we present the palladium-catalyzed regioselective C3-allylic alkylation of 2-aryl imidazopyridines with MBH carbonates. This strategy furnishes a broad spectrum of C3-allylated imidazopyridines, and their structures have been unequivocally established using X-ray analysis. Besides, the reaction can be easily scaled up on a gram scale, and the ensuing product can be smoothly manipulated into synthetically useful entities.
Collapse
Affiliation(s)
- Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Afna Elikkottil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|