1
|
Ray S, Behera D, Singh Harariya M, Das S, Tarafdar PK, Mukherjee S. Alkoxy-Directed Dienamine Catalysis in [4 + 2]-Cycloaddition: Enantioselective Synthesis of Benzo-[3]-ladderanol. J Am Chem Soc 2025; 147:2523-2536. [PMID: 39797784 DOI: 10.1021/jacs.4c13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective de novo arene construction by desymmetrizing meso-enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine. Besides carrying out mechanistic elucidation through density functional theory (DFT) calculation, the utility of this newly developed strategy is demonstrated for the concise enantioselective synthesis of a benzo-analogue of the natural ladderane phospholipid component (+)-[3]-ladderanol. Designed as a functional analogue of natural [3]-ladderanol, this unnatural benzo-[3]-ladderanol was found to impart lower proton permeability and higher stability to the membrane compared to its natural counterpart.
Collapse
Affiliation(s)
- Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Munir B, Yagci BB, Zorlu Y, Türkmen YE. Template-Directed Selective Photodimerization Reactions of 5-Arylpenta-2,4-dienoic Acids. J Org Chem 2024; 89:10409-10418. [PMID: 38984741 PMCID: PMC11267613 DOI: 10.1021/acs.joc.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
We developed an efficient method that enables selective photodimerization of 5-arylpenta-2,4-dienoic acids (i.e., vinylogous cinnamic acids). The use of 1,8-dihydroxynaphthalene as a template ensures proximity of the two reacting olefins so that irradiation of template-bound dienoic acids gives mono [2 + 2] cycloaddition products in good to excellent yields (up to 99%), as single regioisomers, and with high diastereoselectivities (dr = 3:1 to 13:1). The geometrical and stereochemical features of compounds 12a, 16a, and 22a were analyzed by X-ray crystallography.
Collapse
Affiliation(s)
- Badar Munir
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara 06800, Türkiye
| | - Bilge Banu Yagci
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara 06800, Türkiye
| | - Yunus Zorlu
- Department
of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Yunus E. Türkmen
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara 06800, Türkiye
- UNAM
— National Nanotechnology Research Center, Institute of Materials
Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
3
|
Miller AAM, Biallas P, Shennan BDA, Dixon DJ. Enantioselective Total Synthesis of (+)-Incargranine A Enabled by Bifunctional Iminophosphorane and Iridium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314308. [PMID: 37955594 DOI: 10.1002/anie.202314308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Herein we report the first enantioselective total synthesis of (+)-incargranine A, in nine steps. The total synthesis was enabled by an enantioselective intramolecular organocatalysed desymmetrising Michael addition of a malonamate ester to a linked dienone substrate that established pivotal stereocentres with excellent enantio- and complete diastereoselectivity. Furthermore, a key hemiaminal intermediate was accessed by developing an iridium-catalysed reductive cyclisation, and the scope of this transformation was explored to produce a range of bicyclic hemiaminal motifs. Once installed, the hemiaminal motif was used to initiate a biomimetic cascade to access the natural product directly in a single step.
Collapse
Affiliation(s)
- Anna A M Miller
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Phillip Biallas
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin D A Shennan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Guo R, Brown MK. Lewis Acid-Promoted [2 + 2] Cycloadditions of Allenes and Ketenes: Versatile Methods for Natural Product Synthesis. Acc Chem Res 2023; 56:2253-2264. [PMID: 37540783 PMCID: PMC11041672 DOI: 10.1021/acs.accounts.3c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
ConspectusCycloaddition reactions are an effective method to quickly build molecular complexity. As predicted by the Woodward-Hoffmann rules, concerted cycloadditions with alkenes allow for the constructions of all possible stereoisomers of product by use of either the Z or E geometry. While this feature of cycloadditions is widely used in, for example, [4 + 2] cycloadditions, translation to [2 + 2] cycloadditions is challenging because of the often stepwise and therefore stereoconvergent nature of these processes. Over the past decade, our lab has explored Lewis acid-promoted [2 + 2] cycloadditions of electron-deficient allenes or ketenes with alkenes. The concerted, asynchronous cycloadditions allow for the synthesis of various cyclobutanes with control of stereochemistry.Our lab developed the first examples of Lewis acid-promoted ketene-alkene [2 + 2] cycloadditions. Compared with traditional thermal conditions, Lewis acid-promoted conditions have several advantages, such as increased reactivity, increased yield, improved diastereoselectivity, and, for certain cases, inverse diastereoselectivity. Detailed mechanistic studies revealed that the diastereoselectivity was controlled by the size of the substituent and the barrier of a deconjugation event. However, these reactions required the use of stoichiometric amounts of EtAlCl2 because of the product inhibition, which led us to investigate catalytic enantioselective [2 + 2] cycloadditions of allenoates with alkenes. Through the use of chiral oxazaborolidines, a broad range of cyclobutanes can be prepared with the control of enantioselectivity. Mechanistic experiments, including 2D-labled alkenes and Hammett analysis, illuminate likely transition state models for the cycloadditions. Additional studies led to the development of Lewis acid-catalyzed intramolecular stereoselective [2 + 2] cycloadditions of chiral allenic ketones/esters with alkenes.The methods we developed have been instrumental in the synthesis of several families of natural products. Specifically, one key lactone motif in (±)-gracilioether F was constructed by a ketene-alkene [2 + 2] cycloaddition and subsequent regioselective Baeyer-Villiger oxidation sequence. Enantioselective allenoate-alkene [2 + 2] cycloadditions allowed for the synthesis of (-)-hebelophyllene E. Another attempt of applying this method in the synthesis of (+)-[5]-ladderanoic acid failed to deliver the desired cyclobutane because of an unexpected rearrangement. The key cyclobutane was later assembled by a stepwise carboboration/Zweifel olefination process. Finally, the stereoselective [2 + 2] cycloadditions of allenic ketones and alkenes was applied in the syntheses of (-)-[3]-ladderanol, (+)-hippolide J, and (-)-cajanusine.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Rein J, Rozema SD, Langner OC, Zacate SB, Hardy MA, Siu JC, Mercado BQ, Sigman MS, Miller SJ, Lin S. Generality-oriented optimization of enantioselective aminoxyl radical catalysis. Science 2023; 380:706-712. [PMID: 37200427 PMCID: PMC10277815 DOI: 10.1126/science.adf6177] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Catalytic enantioselective methods that are generally applicable to a broad range of substrates are rare. We report a strategy for the oxidative desymmetrization of meso-diols predicated on a nontraditional catalyst optimization protocol by using a panel of screening substrates rather than a singular model substrate. Critical to this approach was rational modulation of a peptide sequence in the catalyst incorporating a distinct aminoxyl-based active residue. A general catalyst emerged, providing high selectivity in the delivery of enantioenriched lactones across a broad range of diols, while also achieving up to ~100,000 turnovers.
Collapse
Affiliation(s)
- J. Rein
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, NY 14853, USA
| | - S. D. Rozema
- Department of Chemistry, Yale University; 225 Prospect Street, New Haven, CT 06520, USA
| | - O. C. Langner
- Department of Chemistry, Yale University; 225 Prospect Street, New Haven, CT 06520, USA
| | - S. B. Zacate
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, NY 14853, USA
| | - M. A. Hardy
- Department of Chemistry, University of Utah; 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - J. C. Siu
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, NY 14853, USA
| | - B. Q. Mercado
- Department of Chemistry, Yale University; 225 Prospect Street, New Haven, CT 06520, USA
| | - M. S. Sigman
- Department of Chemistry, University of Utah; 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - S. J. Miller
- Department of Chemistry, Yale University; 225 Prospect Street, New Haven, CT 06520, USA
| | - S. Lin
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Harris CM, Harris TM, Stec DF, Schley ND, Johnson JL, Covington CL, Polavarapu PL. Synthesis, characterization and absolute configurations of methyl ladderanoates. Chirality 2023; 35:49-57. [PMID: 36367323 DOI: 10.1002/chir.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800-900 cm-1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (-)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.
Collapse
Affiliation(s)
- Constance M Harris
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas M Harris
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Donald F Stec
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan L Johnson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Cody L Covington
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee, USA
| | | |
Collapse
|
7
|
Mondal S, Mukherjee S. Catalytic Generation of Remote C–N Axial Chirality through Atroposelective de novo Arene Construction. Org Lett 2022; 24:8300-8304. [DOI: 10.1021/acs.orglett.2c03272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Subhajit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Chandra Mallojjala S, Sarkar R, Karugu RW, Manna MS, Ray S, Mukherjee S, Hirschi JS. Mechanism and Origin of Remote Stereocontrol in the Organocatalytic Enantioselective Formal C(sp 2)–H Alkylation Using Nitroalkanes as Alkylating Agents. J Am Chem Soc 2022; 144:17399-17406. [PMID: 36108139 DOI: 10.1021/jacs.2c02941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental 13C kinetic isotope effects (KIEs) and density functional theory (DFT) calculations are used to evaluate the mechanism and origin of enantioselectivity in the formal C(sp2)-H alkylative desymmetrization of cyclopentene-1,3-diones using nitroalkanes as the alkylating agent. An unusual combination of an inverse (∼0.980) and a normal (∼1.033) KIE is observed on the bond-forming carbon atoms of the cyclopentene-1,3-dione and nitroalkane, respectively. These data provide strong support for a mechanism involving reversible carbon-carbon bond formation followed by rate- and enantioselectivity-determining nitro group elimination. The theoretical free-energy profile and the predicted KIEs indicate that this elimination event occurs via an E1cB pathway. The origin of remote stereocontrol is evaluated by distortion-interaction and SAPT0 analyses of the E1cB transition states leading to both enantiomers.
Collapse
Affiliation(s)
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rachael W. Karugu
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Madhu Sudan Manna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
9
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective
de novo
Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202204523. [DOI: 10.1002/anie.202204523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | | | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
10
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective de novo Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biki Ghosh
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Mahesh Singh Harariya
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Santanu Mukherjee
- Indian Institute of Science Department of Organic Chemistry C V Raman Avenue 560012 Bangalore INDIA
| |
Collapse
|