1
|
Fang Y, Yi J, Wang H, Zhang Y, Sun Y, Ren J, Qu X. A membrane-penetrative COF-based nanoplatform for intracellular bacterial pathogen eradication across diverse niches. Chem Commun (Camb) 2025. [PMID: 40261062 DOI: 10.1039/d5cc01091h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A COF-based therapeutic nanoplatform has been developed that can be transported to intracellular bacteria-located regions in the host cells, where ultrasound irradiation triggered ROS generation, membrane-penetrative NO release, and the production of highly reactive peroxynitrite (ONOO-), enabling effective bacteria eradication across diverse niches.
Collapse
Affiliation(s)
- Yuxi Fang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiadai Yi
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Yanjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yue Sun
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Zhang Z, Wang L, Yu Q, Li J, Li P, Luan S, Shi H. Bacterial Specific Recognition of Sulfonium Poly(Amino Acid) Adsorbents for Ultrafast MRSA Capture Against Bloodstream Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501298. [PMID: 40223366 DOI: 10.1002/smll.202501298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections pose significant health risks, potentially leading to severe conditions such as bacteremia. Developing effective treatments to eliminate resistant bacteria from the bloodstream, simultaneously mitigate infection-related complications, and reduce mortality remains challenging. Herein, microspheres are synthesized with bacterial elimination and inflammation prevention by crosslinked sulfonium poly(amino acids). As-synthesized microsphere, PM1 0.6B MS, exhibits an ultrafast adsorption efficiency of 0.41 × 108 CFU mg-1 min-1 for MRSA, which positions the highest index among the reported resin and inorganic adsorptions. This bacterial-specific and efficient capture of PM1 0.6B MS is attributed to its strong interactions with teichoic acids in MRSA (Ka: 1.8 × 105 M-1) rather than acting with phospholipids of mammalian cells. Unlike the present resin-based adsorbent, for example, heparin-modified polyethylene in the only commercial Seraph® 100, PM1 0.6B MS kills adsorbed bacteria within 1 h and can be reused by simple treatment. Meanwhile, PM1 0.6B MS also shows good hemocompatibility and longer thrombin activation time to reduce the risk of thrombosis and hemolysis. In vivo experiments further confirm the abilities of PM1 0.6B MS to prevent inflammation by removing bacteria. This adsorbent is a promising candidate for early treating life-threatening bloodstream infections, potentially preventing bacteremia and subsequent organ damage.
Collapse
Affiliation(s)
- Zhenyan Zhang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Changchun, 130022, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Wang H, Bi D, Yu B, Chen Q, Du S, Xie G, Zhu J, Zhang L. Photonic hydrogels combining the slow photon effect and NO gas therapy for synergetic enhanced photodynamic antibacterial therapy. J Colloid Interface Sci 2025; 682:1185-1194. [PMID: 39671952 DOI: 10.1016/j.jcis.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Photodynamic therapy (PDT) offers potential for combating bacterial infections through the generation of reactive oxygen species (ROS). However, the antibacterial efficiency of PDT is largely impeded by the limited photon absorption of photosensitizers and the short diffusion length and lifespan of ROS. Herein, we present a light-harvesting platform based on l-arginine-modified photonic hydrogels loaded with new indocyanine green (PG@Arg/IR820) for synergizing the slow photon effect with NO gas therapy to enhance PDT antibacterial efficiency. Upon near-infrared (NIR) light irradiation, PG@Arg/IR820 can maximize the utilization of photons via the slow photon effect to generate sufficient ROS, which not only acts as the primary bactericidal agent in PDT but also triggers l-arginine to generate NO. NO exhibits a long diffusion distance and lifespan and can freely diffuse to inhibit distant bacterial growth, demonstrating a vital complementary advantage in bacterial inactivation by ROS. The synergistic effect of the slow photon effect combined with NO gas therapy allows PG@Arg/IR820 to intensify bacterial destruction and enhance PDT antibacterial efficiency. This antibacterial system sheds light on an advisable design principle for efficient antibacterial activities in photodynamic inactivation.
Collapse
Affiliation(s)
- Hui Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Duohang Bi
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bowen Yu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qiang Chen
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
4
|
He X, Zou C, Zhang L, Wu P, Yao Y, Dong K, Ren Y, Hu WW, Li Y, Luo H, Ying B, Luo F, Sun X. Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications. Adv Healthc Mater 2025; 14:e2403468. [PMID: 39865954 DOI: 10.1002/adhm.202403468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO2 -) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO2 - pollution and maintaining nitrogen cycle balance. Recent developments in catalysts and E-NOgen devices have propelled NO2 - conversion, enabling on-demand NO production. This review provides an overview of NO2 - reduction pathways, with a focus on cutting-edge Fe/Cu-based E-NOgen catalysts, and explores the development of E-NOgen devices for biomedical use. Challenges and future directions for advancing E-NOgen technologies are also discussed.
Collapse
Affiliation(s)
- Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chang Zou
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Limei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peilin Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Sichuan, 250014, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Han Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Sichuan, 250014, China
| |
Collapse
|
5
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2025; 26:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
6
|
Shen Z, Jiang W, Zheng S, Luo S, Guo Z, Wang Q, Wang Y, Hu J. Intracellular Co-Delivery of Carbon Monoxide and Nitric Oxide Induces Mitochondrial Apoptosis for Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202419939. [PMID: 39781751 DOI: 10.1002/anie.202419939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths. This approach rationally couples aerobic photooxidative and anaerobic photocatalytic reactions within a polymeric micelle platform, using palladium(II) tetraphenyltetrabenzoporphyrin (PdTPTBP) as both photosensitizer and photocatalyst. Notably, the photooxidation-mediated release of CO generates a local hypoxic microenvironment, which facilitates the photoredox catalyzed release of NO. This self-adaptive micelle platform enables efficient uptake by tumor cells and intracellular co-delivery of CO and NO under 630 nm light irradiation, demonstrating potent anti-tumor activity in a 4T1 tumor-bearing mouse model via the synergistic induction of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Siyuan Luo
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zixuan Guo
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
7
|
Fu X, Hu X. Ultrasound-Controlled Prodrug Activation: Emerging Strategies in Polymer Mechanochemistry and Sonodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8040-8058. [PMID: 38698527 PMCID: PMC11653258 DOI: 10.1021/acsabm.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
8
|
Zhou K, Du L, Ding R, Xu L, Shi S, Wang S, Wang Z, Zhang G, He G, Zhao Z, Tang BZ. Photocatalytic therapy via photoinduced redox imbalance in biological system. Nat Commun 2024; 15:10551. [PMID: 39632877 PMCID: PMC11618361 DOI: 10.1038/s41467-024-55060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Redox balance is essential for sustaining normal physiological metabolic activities of life. In this study, we present a photocatalytic system to perturb the balance of NADH/NAD+ in oxygen-free conditions, achieving photocatalytic therapy to cure anaerobic bacterial infected periodontitis. Under light irradiation, the catalyst TBSMSPy+ can bind bacterial DNA and initiate the generation of radical species through a multi-step electron transfer process. It catalyzes the conversion from NADH to NAD+ (the turnover frequency up to 60.7 min-1), inhibits ATP synthesis, disrupts the energy supply required for DNA replication, and successfully accomplishes photocatalytic sterilization in an oxygen-free environment. The catalyst participates in the redox reaction, interfering with the balance of NADH/NAD+ contents under irradiation, so we termed this action as photoinduced redox imbalance. Additionally, animal experiments in male rats also validate that the TBSMSPy+ could effectively catalyze the NADH oxidation, suppress metabolism and stimulate osteogenesis. Our research substantiates the concept of photoinduced redox imbalance and the application of photocatalytic therapy, further advocating the development of such catalyst based on photoinduced redox imbalance strategy for oxygen-free phototherapy.
Collapse
Grants
- 52003228 National Natural Science Foundation of China (National Science Foundation of China)
- 52273197 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2023YFB3810001), Shenzhen Key Laboratory of Functional Aggregate Materials (ZDSYS 20211021111400001), Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ 2021324134613038, KQTD 20210811090142053, JCYJ20220818103007014, GJHZ 20210705141810031), the Innovation and Technology Commission (ITC-CNERC14SC01), the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (2021-kllma-08), Guangzhou 510640, China (South China University of Technology). Guangzhou Science and Technology Planning Project (202201010439). Guangdong Basic and Applied Basic Research Foundation (2023A1515110346, 2021A1515110826). Guangzhou Science and Technology Planning Project (202201010439).
Collapse
Affiliation(s)
- Kun Zhou
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Letian Xu
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, China
| | - Shuai Shi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Siyuan Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zaiyu Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Guoqing Zhang
- University of Science and Technology of China, Hefei, Anhui, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangdong, China.
| |
Collapse
|
9
|
Li X, Zhang Q, Wu W, Lin J, Liu Y, Chen L, Qiu X. Lignin-Based Visible Light-Triggered Nitric Oxide Nanogenerator for Antibacterial Applications. Biomacromolecules 2024; 25:6624-6634. [PMID: 39334552 DOI: 10.1021/acs.biomac.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Nitric oxide (NO) has received growing attention as an effective antibacterial agent with broad-spectrum activity and a low risk of resistance. However, it remains challenging to develop effective, controllable, and biocompatible NO-releasing materials. Here, we report a novel NO nanogenerator (AL-BNN6-PEG) self-assembled by lignin, a UV-absorbing and hydrophobic NO donor (N,N'-disec-butyl-N,N'-dinitroso-1,4-phenylenediamine, BNN6), and PEG-DSPE2000. It was discovered that upon visible light irradiation (450-460 nm), BNN6 can be decomposed by lignin within micellar nanoparticles via a photoinduced electron transfer mechanism in the aqueous medium. Lignin not only served as a sustainable carrier, enhancing the water dispersity of BNN6, but also acted as a biocompatible photosensitizer, triggering BNN6 decomposition with the concomitant release of NO. As a result, the micellar nanoparticles displayed superior antibacterial effects against Gram-negative and Gram-positive bacteria upon visible light illumination. Moreover, MTT assay revealed the negligible cytotoxic effect of the micellar nanoparticles to the mouse fibroblast cells (L929). This research provides more insight into the BNN6 decomposition mechanism and demonstrates a straightforward, effective, and biocompatible strategy for controlled NO-mediated antibacterial applications.
Collapse
Affiliation(s)
- Xiaoya Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Qian Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Weidong Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Jinxin Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Yingchun Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
10
|
Gan G, Shen Z, Zheng S, Zhang G, Yin D, Liu S, Hu J. Biomimetic Activation of N-Nitrosamides with Red Light-Triggered Nitric Oxide Release via Mediated Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202409981. [PMID: 39037730 DOI: 10.1002/anie.202409981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Mediated electron transfer (MET) is fundamental to many biological functions, including cellular respiration, photosynthesis, and enzymatic catalysis. However, leveraging the MET process to enable the release of therapeutic gases has been largely unexplored. Herein, we report the bio-inspired activation of a series of UV-absorbing N-nitrosamide derivatives (NOA) under red light exposure, enabling the quantitative release of nitric oxide (NO) gasotransmitter via an MET process. The cornerstone of our design is the covalent linkage of a 2,4-dinitroaniline moiety, which acts as an electron mediator to the N-nitrosamide groups. This facilitates efficient electron transfer from the excited palladium(II) meso-tetraphenyltetrabenzoporphyrin (PdTPTBP) photocatalyst and the selective activation of NOA. Our approach has been validated with distinct photocatalysts and various N-nitrosamides, including those derived from carbamates, amides, and ureas. Notably, the modulation of the linker length between the electron mediator and N-nitrosamide groups serves as a regulatory mechanism for controlling NO release kinetics. Moreover, this biomimetic NO release platform demonstrates effective operation under both normoxic and hypoxic conditions, and it enables localized delivery of NO under physiological conditions, exhibiting significant anticancer efficacy within the phototherapeutic window and enhanced selectivity towards tumor cells.
Collapse
Affiliation(s)
- Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery and Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
11
|
Yang C, Mu GF, Liang X, Yan Q. Gas-Responsive and Gas-Releasing Polymer Assemblies. Chemphyschem 2024; 25:e202400413. [PMID: 38747673 DOI: 10.1002/cphc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 06/28/2024]
Abstract
In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas. In this review, we summarize the fundamental design rationale of gas-responsive and gas-releasing polymers in structure and their controlled transition in self-assembled morphology and function, as well as present some perspectives in this prosperous field. Emerging challenges faced for the future research are also discussed.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Gui-Fang Mu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| |
Collapse
|
12
|
Chaudhary K, Agrahari B, Biswas B, Chatterjee N, Chaudhary A, Kumar A, Sonker H, Dewan S, Saxena D, Akhir A, Malhotra N, Chopra S, Misra S, Matheswaran S, Singh RG. Pyridine-2,6-Dicarboxamide Proligands and their Cu(II)/Zn(II) Complexes Targeting Staphylococcus Aureus for the Attenuation of In Vivo Dental Biofilm. Adv Healthc Mater 2024; 13:e2400378. [PMID: 38621382 DOI: 10.1002/adhm.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Indexed: 04/17/2024]
Abstract
In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.
Collapse
Affiliation(s)
| | | | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | | | | - Sayari Dewan
- Department of Chemistry, IIT, Kanpur, 208016, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nidhi Malhotra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Budh Nagar, 201314, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Santosh Misra
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | |
Collapse
|
13
|
Qu Y, Zhuang L, Bao W, Li C, Chen H, He S, Yao H, Si Q. Atomically dispersed nanozyme-based synergistic mild photothermal/nanocatalytic therapy for eradicating multidrug-resistant bacteria and accelerating infected wound healing. RSC Adv 2024; 14:7157-7171. [PMID: 38419673 PMCID: PMC10900182 DOI: 10.1039/d3ra08431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Constructing a synergistic multiple-modal antibacterial platform for multi-drug-resistant (MDR) bacterial eradication and effective treatment of infected wounds remains an important and challenging goal. Herein, we developed a multifunctional Cu/Mn dual single-atom nanozyme (Cu/Mn-DSAzymes)-based synergistic mild photothermal/nanocatalytic-therapy for a MDR bacterium-infected wound. Cu/Mn-DSAzymes with collaborative effects exhibit remarkable dual CAT-like and OXD-like enzyme activities and could efficiently catalyze cascade enzymatic reactions with a low level of H2O2 as an initial reactant to produce reparative O2 and lethal ˙O2-. Moreover, a black N-doped carbon nanosheet supports of Cu/Mn-DSAzymes show superior NIR-II-triggered photothermal performance, endowing them with photothermal-enhanced dual enzyme catalysis. In addition, such enhanced dual enzyme catalysis likely improves the susceptibility and lethality of photothermal effects on MDR bacteria. In vitro and in vivo studies demonstrate that Cu/Mn-DSAzyme-mediated synergistic nanocatalytic and photothermal effects possess dramatic antibacterial outcomes against MDR bacteria and evidently reduced inflammation at wound sites. Moreover, the combined photothermal effect and O2 release mediated by Cu/Mn-DSAzymes promotes macrophage polarization to reparative M2 phenotype, collagen deposition, and angiogenesis, considerably accelerating wound healing. Therefore, Cu/Mn-DSAzyme-based synergetic dual-modal antibacterial therapy is a promising strategy for MDR bacterium-infected wound treatment, owing to their excellent antibacterial ability and significant tissue remodeling effects.
Collapse
Affiliation(s)
- Ying Qu
- College of Nursing, Inner Mongolia Minzu University Tongliao Inner Mongolia 028000 China
| | - Liang Zhuang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University 11 Fucheng Road, Haidian District Beijing 100048 P. R. China
| | - Wuren Bao
- College of Nursing, Inner Mongolia Minzu University Tongliao Inner Mongolia 028000 China
| | - Chunlin Li
- The Third Healthcare Department of the 2nd Medical Center, Chinese PLA General Hospital Beiing 100853 China
| | - Hongyu Chen
- Pain Department, Eye Hospital China Academy of Chinese Medical Sciences Beijing 100040 China
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University 11 Fucheng Road, Haidian District Beijing 100048 P. R. China
| | - Hui Yao
- Pain Department, Eye Hospital China Academy of Chinese Medical Sciences Beijing 100040 China
| | - Quanjin Si
- The Third Healthcare Department of the 2nd Medical Center, Chinese PLA General Hospital Beiing 100853 China
| |
Collapse
|
14
|
Hao DB, Li JL, Zhou XC, Li YY, Zhao ZX, Zhou R. Visible-Light-Driven NO Release from Postmodified MOFs via Photoinduced Electron Transfer for Antibacterial Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305943. [PMID: 37681501 DOI: 10.1002/smll.202305943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Photoresponsive nitric oxide (NO)-releasing materials (NORMs) enable the spatiotemporal delivery of NO to facilitate their potential applications in physiological conditions. Here two novel metal-organic frameworks (MOFs)-based photoactive NORMs achieved by the incorporation of prefunctionalized NO donors into the photosensitive Fe-MOFs via a postmodification strategy is reported. The modified Fe-MOFs display superior photoactivity of NO release when exposed to visible light (up to 720 nm). Significantly, the visible-light-driven NO release properties are further corroborated by their efficient antibacterial performance.
Collapse
Affiliation(s)
- De-Bo Hao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Jia-Li Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Xin Zhao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
| | - Rui Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
15
|
Zhang M, Cheng J, Shen Z, Lin P, Ding S, Hu J. A Single-Component Dual Donor Enables Ultrasound-Triggered Co-release of Carbon Monoxide and Hydrogen Sulfide. Angew Chem Int Ed Engl 2023; 62:e202314563. [PMID: 37964723 DOI: 10.1002/anie.202314563] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
The development of dual gasotransmitter donors can not only provide robust tools to investigate their subtle interplay under pathophysiological conditions but also optimize therapeutic efficacy. While conventional strategies are heavily dependent on multicomponent donors, we herein report an ultrasound-responsive water-soluble copolymer (PSHF) capable of releasing carbon monoxide (CO) and hydrogen sulfide (H2 S) based on single-component sulfur-substituted 3-hydroxyflavone (SHF) derivatives. Interestingly, sulfur substitution can not only greatly improve the ultrasound sensitivity but also enable the co-release of CO/H2 S under mild ultrasound irradiation. The co-release of CO/H2 S gasotransmitters exerts a bactericidal effect against Staphylococcus aureus and demonstrates anti-inflammatory activity in lipopolysaccharide-challenged macrophages. Moreover, the excellent tissue penetration of ultrasound irradiation enables the local release of CO/H2 S in the joints of septic arthritis rats, exhibiting superior therapeutic efficacy without the need for any antibiotics.
Collapse
Affiliation(s)
- Mengdan Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jian Cheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Paiyu Lin
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
16
|
Cheng J, Gan G, Zheng S, Zhang G, Zhu C, Liu S, Hu J. Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections. Nat Commun 2023; 14:7510. [PMID: 37980361 PMCID: PMC10657346 DOI: 10.1038/s41467-023-43415-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
The formation of biofilms is closely associated with persistent and chronic infections, and physiological heterogeneity such as pH and oxygen gradients renders biofilms highly resistant to conventional antibiotics. To date, effectively treating biofilm infections remains a significant challenge. Herein, we report the fabrication of micellar nanoparticles adapted to heterogeneous biofilm microenvironments, enabling nitric oxide (NO) release through two distinct photoredox catalysis mechanisms. The key design feature involves the use of tertiary amine (TA) moieties, which function as sacrificial agents to avoid the quenching of photocatalysts under normoxic and neutral pH conditions and proton acceptors at acidic pH to allow deep biofilm penetration. This biofilm-adaptive NO-releasing platform shows excellent antibiofilm activity against ciprofloxacin-resistant Pseudomonas aeruginosa (CRPA) biofilms both in vitro and in a mouse skin infection model, providing a strategy for combating biofilm heterogeneity and biofilm-related infections.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, China.
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
| |
Collapse
|
17
|
Song M, Li L, Liu J, Gao Y, Li M, Zhou L, Qin B, Xiang A, Sun X, Fan W, Lei Y, Chen X. Peroxynitrite-Scavenging Organosilica Nanomedicines for Light-Controllable NO Release and Precision On-Demand Glaucoma Therapy. ACS NANO 2023; 17:20979-20990. [PMID: 37906948 DOI: 10.1021/acsnano.3c02685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Nitric oxide (NO) is a promising approach for treating ocular hypertension and glaucoma. However, its clinical application is limited by its uncontrollable release and the unwanted overproduction of peroxynitrite. Herein, a denitrifying hollow mesoporous organosilica nanoparticle (HMMN) with framework cohybridization is first constructed to encapsulate S-nitroso-N-acetyl-d,l-penicillamine (SNAP) to produce SNAP@HMMN with dual capacities of selective peroxynitrite removal and controllable NO release. Featuring a large corneal permeability, the well-designed SNAP@HMMN can achieve trans-corneal delivery to reach the target trabecular meshwork (TM)/Schlemm's canal (SC) site. Upon light irradiation, the intraocular pressure (IOP) is appropriately lowered in an adjustable and long-lasting manner while the outflow tissues are protected from nitrative damage, which is expected to realize precision on-demand glaucoma therapy with little biosafety concern, promising significant clinical translational potential.
Collapse
Affiliation(s)
- Maomao Song
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Jiamin Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Yanting Gao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, People's Republic of China
| | - Mengwei Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Liming Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Bo Qin
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Ajun Xiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, People's Republic of China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical, and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
18
|
Kumar A, Estes Bright LM, Garren MRS, Manuel J, Shome A, Handa H. Chemical Modification of Tiopronin for Dual Management of Cystinuria and Associated Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43332-43344. [PMID: 37671841 PMCID: PMC10520916 DOI: 10.1021/acsami.3c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Cystinuria is an inherited autosomal recessive disease of the kidneys of recurring nature that contributes to frequent urinary tract infections due to bacterial growth and biofilm formation surrounding the stone microenvironment. In the past, commonly used strategies for managing cystinuria involved the use of (a) cystine crystal growth inhibitors such as l-cystine dimethyl ester and lipoic acid, and (b) thiol-based small molecules such as N-(2-mercaptopropionyl) glycine, commonly known as tiopronin, that reduce the formation of cystine crystals by reacting with excess cystine and generating more soluble disulfide compounds. However, there is a dearth of simplistic chemical approaches that have focused on the dual treatment of cystinuria and the associated microbial infections. This work strategically exploited a single chemical approach to develop a nitric oxide (NO)-releasing therapeutic compound, S-nitroso-2-mercaptopropionyl glycine (tiopronin-NO), for the dual management of cystine stone formation and the related bacterial infections. The results successfully demonstrated that (a) the antibacterial activity of NO rendered tiopronin-NO effective against the stone microenvironment inhabitants, Escherichia coli and Pseudomonas aeruginosa, and (b) tiopronin-NO retained the ability to undergo disulfide exchange with cystine while being reported to be safe against canine kidney and mouse fibroblast cells. Thus, the synthesis of such a facile molecule aimed at the dual management of cystinuria and related infections is unprecedented in the literature.
Collapse
Affiliation(s)
- Anil Kumar
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lori M. Estes Bright
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Richard Stephen Garren
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - James Manuel
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arpita Shome
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Zheng Y, Liu Y, Wu Z, Peng C, Wang Z, Yan J, Yan Y, Li Z, Liu C, Xue J, Tan H, Fu Q, Ding M. Photoallosteric Polymersomes toward On-Demand Drug Delivery and Multimodal Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210986. [PMID: 36852633 DOI: 10.1002/adma.202210986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Indexed: 06/16/2023]
Abstract
Allosteric transitions can modulate the self-assembly and biological function of proteins. It remains, however, tremendously challenging to design synthetic allosteric polymeric assemblies with spatiotemporally switchable hierarchical structures and functionalities. Here, a photoallosteric polymersome is constructed that undergoes a rapid conformational transition from β-sheet to α-helix upon exposure to near-infrared light irradiation. In addition to improving nanoparticle cell penetration and lysosome escape, photoinduced allosteric behavior reconstructs the vesicular membrane structure, which stimulates the release of hydrophilic cytolytic peptide melittin and hydrophobic kinase inhibitor sorafenib. Combining on-demand delivery of multiple therapeutics with phototherapy results in apoptosis and immunogenic death of tumor cells, remold the immune microenvironment and achieve an excellent synergistic anticancer efficacy in vivo without tumor recurrence and metastasis. Such a light-modulated allosteric transition in non-photosensitive polymers provides new insight into the development of smart nanomaterials for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongchao Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingyue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Congcong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
20
|
Wang C, Tian G, Yu X, Zhang X. Recent Advances in Functional Nanomaterials for Catalytic Generation of Nitric Oxide: A Mini Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207261. [PMID: 36808830 DOI: 10.1002/smll.202207261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
As a gaseous second messenger, nitric oxide (NO) plays an important role in a series of signal pathways. Research on the NO regulation for various disease treatments has aroused wide concern. However, the lack of accurate, controllable, and persistent release of NO has significantly limited the application of NO therapy. Profiting from the booming development of advanced nanotechnology, a mass of nanomaterials with the properties of controllable release have been developed to seek new and effective NO nano-delivery approaches. Nano-delivery systems that generate NO through catalytic reactions exhibit unique superiority in terms of precise and persistent release of NO. Although certain achievements have been made in the catalytically active NO delivery nanomaterials, some basic but critical issues, such as the concept of design, are of low attention. Herein, an overview of the generation of NO through catalytic reactions and the design principles of related nanomaterials are summarized. Then, the nanomaterials that generate NO through catalytic reactions are classified. Finally, the bottlenecks and perspectives are also discussed in depth for the future development of catalytical NO generation nanomaterials.
Collapse
Affiliation(s)
- Chengyan Wang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Gan Tian
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| |
Collapse
|
21
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
22
|
Huang B, Zhang C, Tian J, Tian Q, Huang G, Zhang W. A Cascade BIME-Triggered Near-IR Cyanine Nanoplatform for Enhanced Antibacterial Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10520-10528. [PMID: 36794860 DOI: 10.1021/acsami.2c22937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-standing misuse of antibiotics has accelerated the emergence of drug-resistant bacteria, which gives rise to an urgent public health threat. Antibacterial photodynamic therapy (aPDT), as a burgeoning and promising antibacterial strategy, plays an essential role in avoiding the evolution of drug-resistant microbes. However, it is hard for conventional photosensitizers to achieve satisfactory antibacterial efficacy because of the complex bacterial infectious microenvironment (BIME). Herein, a cascade BIME-triggered near-infrared cyanine (HA-CY) nanoplatform has been developed via conjugating cyanine units to biocompatible hyaluronic acid (HA) for enhanced aPDT efficacy. The HA-CY nanoparticles can be dissociated under the overexpressed hyaluronidase in BIME to release a cyanine photosensitizer. Meanwhile, cyanine can be protonated under acidic BIME, where protonated cyanine can efficiently adhere to the surface of a negatively charged bacterial membrane and increase singlet oxygen production due to intramolecular charge transfer (ICT). Experiments in the cellular level and animal model proved that the BIME-triggered activation of aPDT could remarkably boost aPDT efficacy. Overall, this BIME-triggered HA-CY nanoplatform presents great promise for overcoming the dilemma of drug-resistant microbes.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chen Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
23
|
Sun J, Wang W, Hu X, Zhang X, Zhu C, Hu J, Ma R. Local delivery of gaseous signaling molecules for orthopedic disease therapy. J Nanobiotechnology 2023; 21:58. [PMID: 36810201 PMCID: PMC9942085 DOI: 10.1186/s12951-023-01813-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Over the past decade, a proliferation of research has used nanoparticles to deliver gaseous signaling molecules for medical purposes. The discovery and revelation of the role of gaseous signaling molecules have been accompanied by nanoparticle therapies for their local delivery. While most of them have been applied in oncology, recent advances have demonstrated their considerable potential in diagnosing and treating orthopedic diseases. Three of the currently recognized gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are highlighted in this review along with their distinctive biological functions and roles in orthopedic diseases. Moreover, this review summarizes the progress in therapeutic development over the past ten years with a deeper discussion of unresolved issues and potential clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Sun
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
24
|
Huang W, Zhang J, Luo L, Yu Y, Sun T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater Sci Eng 2023; 9:139-152. [PMID: 36576226 DOI: 10.1021/acsbiomaterials.2c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As an important endogenous signaling molecule, nitric oxide (NO) is involved in various physiological and pathological activities in living organisms. It is proved that NO plays a critical role in tumor therapy, while the extremely short half-life and nonspecific distribution of NO greatly limit its further clinical applications. Thus, the past few decades have witnessed the progress made in conquering these shortcomings, including developing innovative NO donors, especially smart and multimodal nanoplatforms. These platforms can precisely control the spatiotemporal distribution of therapeutic agents in the organism, which make big differences in tumor treatment. Here current NO therapeutic mechanisms for cancer, NO donors from small molecules to smart-responsive nanodrug delivery platforms, and NO-based combination therapy are comprehensively reviewed, emphasizing outstanding breakthroughs in these fields and hoping to bring new insights into NO-based tumor treatments.
Collapse
Affiliation(s)
- Wan Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Li Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
25
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204365. [PMID: 36437106 PMCID: PMC9839863 DOI: 10.1002/advs.202204365] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Indexed: 05/08/2023]
Abstract
Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.
Collapse
Affiliation(s)
- Yunrong Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Min Liu
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
26
|
Xu X, Wang Q, Chang Y, Zhang Y, Peng H, Whittaker AK, Fu C. Antifouling and Antibacterial Surfaces Grafted with Sulfur-Containing Copolymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41400-41411. [PMID: 36040859 DOI: 10.1021/acsami.2c09698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifouling and antibacterial surfaces that can prevent nonspecific biological adhesion are important to support a myriad of biomedical applications. In this study, we have used an innovative photopolymerization technology to develop sulfur-containing polymer-grafted antifouling and antibacterial surfaces. The relationship between the hydrophilic property and the capability to resist protein and macrophage adsorption of the surface copolymer brushes was investigated. The sulfide monomer incorporated into the surface copolymer brushes can be further ionized to carry positive charges and impart antibacterial activity, leading to surfaces with dual antifouling and antibacterial functions. We believe that the reported sulfur-containing polymer brushes can be considered an emerging and important polymer for antifouling and antibacterial applications.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|