1
|
Bera A, Baklouti I, Lykov VA, Ulrich I, Lucht K, Rowen JF, Sander W, Morgenstern K. Geometric Effects on C-C Coupling of Aryl-Carbenes under 2D Confinement. Chemistry 2025; 31:e202403857. [PMID: 39775985 DOI: 10.1002/chem.202403857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
It is well established that the confinement of reactants to two dimensions influences their reactivity. However, such confinement is often dominated by charge transfer effects between the reactants and the confining walls, in particular if the walls are conductive. Also, the reactivity of carbenes on metal surfaces is significantly affected by the charge transfer between the carbene and the metal, rendering the carbene more nucleophilic or electrophilic. Here, we investigate the geometrical effects of 2D confinement without an influence of the supporting metal for a photoinduced reaction of an aryl carbene on an ionic decoupling layer. We demonstrate the decoupling concept for the C-C coupling of 3-methoxy-9-fluorenylidene (C14H10O) on a NaBr(100) bilayer on Ag(111). We combine scanning tunneling microscopy with infrared reflection absorption spectroscopy to follow the photoinduced C-C coupling of the carbene from its diazo-protected precursor in two dimensions. Our study demonstrates that the NaBr decoupling bilayer efficiently suppresses the effects of the metal surface, facilitating carbene chemistry under geometrical confinement.
Collapse
Affiliation(s)
- Abhijit Bera
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Iheb Baklouti
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Vladimir A Lykov
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Iris Ulrich
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Karsten Lucht
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Julien F Rowen
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Wolfram Sander
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Karina Morgenstern
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| |
Collapse
|
2
|
Heiner BR, Handy KM, Devlin AM, Soucek JL, Pittsford AM, Turner DA, Petersen JP, Oliver AG, Corcelli SA, Kandel SA. Enantiopure molecules form apparently racemic monolayers of chiral cyclic pentamers. Phys Chem Chem Phys 2024; 26:25430-25438. [PMID: 39319688 DOI: 10.1039/d4cp02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Ultra-high vacuum scanning tunneling microscopy (UHV-STM) was used to investigate two related molecules pulse-deposited onto Au(111) surfaces: indoline-2-carboxylic acid and proline (pyrrolidine-2-carboxylic acid). Indoline-2-carboxylic acid and proline form both dimers and C5-symmetric "pinwheel" pentamers. Enantiomerically pure S-(-)-indoline-2-carboxylic acid and S-proline were used, and the pentamer structures observed for both were chiral. However, the presence of apparently equal numbers of 'right-' and 'left-handed' pinwheels is contrary to the general understanding that the chirality of the molecule dictates supramolecular chirality. A variety of computational methods were used to elucidate pentamer geometry for S-proline. Straightforward geometry optimization proved difficult, as the size of the cluster and the number of possible intermolecular interactions produced an interaction potential with multiple local minima. Instead, the Amber force field was used to exhaustively search all of phase space for chemically reasonable pentamer structures, producing a limited number of candidate structures that were then optimized as gas-phase clusters using density functional theory (DFT). The binding energies of the two lowest-energy pentamers on the Au(111) surface were then calculated by plane-wave DFT using the VASP software, and STM images predicted. These calculations indicate that the right- and left-handed pentamers are instead two different polymorphs.
Collapse
Affiliation(s)
- Benjamin R Heiner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kaitlyn M Handy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Angela M Devlin
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE 68179, USA
| | - Jewel L Soucek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alexander M Pittsford
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - S Alex Kandel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
3
|
Liou F, Tsai HZ, Goodwin ZAH, Yang Y, Aikawa AS, Angeles BRP, Pezzini S, Nguyen L, Trishin S, Cheng Z, Zhou S, Roberts PW, Xu X, Watanabe K, Taniguchi T, Bellani V, Wang F, Lischner J, Crommie MF. Gate-Switchable Molecular Diffusion on a Graphene Field-Effect Transistor. ACS NANO 2024; 18:24262-24268. [PMID: 39158860 DOI: 10.1021/acsnano.4c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Controlling the surface diffusion of particles on 2D devices creates opportunities for advancing microscopic processes such as nanoassembly, thin-film growth, and catalysis. Here, we demonstrate the ability to control the diffusion of F4TCNQ molecules at the surface of clean graphene field-effect transistors (FETs) via electrostatic gating. Tuning the back-gate voltage (VG) of a graphene FET switches molecular adsorbates between negative and neutral charge states, leading to dramatic changes in their diffusion properties. Scanning tunneling microscopy measurements reveal that the diffusivity of neutral molecules decreases rapidly with a decreasing VG and involves rotational diffusion processes. The molecular diffusivity of negatively charged molecules, on the other hand, remains nearly constant over a wide range of applied VG values and is dominated by purely translational processes. First-principles density functional theory calculations confirm that the energy landscapes experienced by neutral vs charged molecules lead to diffusion behavior consistent with experiment. Gate-tunability of the diffusion barrier for F4TCNQ molecules on graphene enables graphene FETs to act as diffusion switches.
Collapse
Affiliation(s)
- Franklin Liou
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Hsin-Zon Tsai
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, Prince Consort Rd, London SW7 2BB, U.K
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiming Yang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew S Aikawa
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brian R P Angeles
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Sergio Pezzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Luc Nguyen
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Sergey Trishin
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Zhichao Cheng
- Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shizhe Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Paul W Roberts
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Xiaomin Xu
- Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Johannes Lischner
- Department of Materials, Imperial College London, Prince Consort Rd, London SW7 2BB, U.K
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Zhang Z, Zhao X, Miao X, Deng W. Identifying Target Molecule and Trace Amount of the Byproduct by Two-Dimensional Self-Assembly with Different Solution Concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17826-17834. [PMID: 39115458 DOI: 10.1021/acs.langmuir.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Scanning tunneling microscopy (STM) is a powerful way to realize the recognition of self-assembled nanostructures on the atomic scale. In this article, dihexadecyl 6,9-bis((4-(hexadecyloxy)phenyl)ethynyl) phenanthro[9,10-c]thiophene-1,3-dicarboxylate (D-PT) and dihexadecyl 6-bromo-9-((4-(hexadecyloxy) phenyl)ethynyl)phenanthrol[9,10-c]thiophene-1,3-dicarboxylate (S-BrPT) with different substituents were chosen as the target system. D-PT with four side chains as the target molecule and S-BrPT with three side chains and a bromine substituent as the byproduct were mixed in a molar concentration ratio of 20:1. The effect of solution concentration on the molecular self-assembly of the mixture was investigated by STM at the hexadecane/HOPG interface. At high concentrations, only D-PT molecules formed a dimer pattern resulting from the intermolecular van der Waals force and self-adaption. Further diluting the solution, D-PT formed the coexisting dimer and linear structures, in which the linear pattern was formed via solvent coadsorption. At low concentrations, S-BrPT molecules forming N-shaped dimers appeared and filled the linear structure fabricated by D-PT molecules. With further decrease in the concentration, S-BrPT molecules formed N-shaped dimers covering almost half of the surface area, resulting from the C-Br···π and Br···H-C bonds. At very low concentrations, S-BrPT molecules formed N-shaped dimers to arrange the matrix architecture due to the coadsorption of more hexadecane molecules. Density functional theory (DFT) calculations demonstrated that the stronger intermolecular C-Br···π and Br···H-C bonds were significant factors in determining the formation of N-shaped dimers and the stability of this nanostructure. This work enriches the diversity of self-assembled motifs and provides a strategy to characterize different symmetric molecules with trace amounts in a mixed system by STM.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xiaoyang Zhao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
5
|
Peng X, Zhang Y, Liu X, Qian Y, Ouyang Z, Kong H. From Short- to Long-Range Chiral Recognition on Surfaces: Chiral Assembly and Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307171. [PMID: 38054810 DOI: 10.1002/smll.202307171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Research on chiral behaviors of small organic molecules at solid surfaces, including chiral assembly and synthesis, can not only help unravel the origin of the chiral phenomenon in biological/chemical systems but also provide promising strategies to build up unprecedented chiral surfaces or nanoarchitectures with advanced applications in novel nanomaterials/nanodevices. Understanding how molecular chirality is recognized is considered to be a mandatory basis for such studies. In this review, a series of recent studies in chiral assembly and synthesis at well-defined metal surfaces under ultra-high vacuum conditions are outlined. More importantly, the intrinsic mechanisms of chiral recognition are highlighted, including short/long-range chiral recognition in chiral assembly and two main strategies to steer the reaction pathways and modulate selective synthesis of specific chiral products on surfaces.
Collapse
Affiliation(s)
- Xinchen Peng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinhui Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zuoling Ouyang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|