1
|
Wang S, Wu S, Hao W, Liu M. Nanoaggregation-Enhanced and Inverted Circularly Polarized Luminescence in Isomeric Schiff Base Bis(boron difluoride) Complexes. Chem Asian J 2025:e00506. [PMID: 40391992 DOI: 10.1002/asia.202500506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
To elucidate the emergence and amplification of circularly polarized luminescence (CPL) in chiral molecules and their assemblies, we designed positionally isomeric chiral V-shaped Schiff base ligands and their corresponding bis(boron difluoride) complexes. The ligands were synthesized by condensing chiral cyclohexanediamine with either 1-hydroxy-2-naphthaldehyde or 2-hydroxy-1-naphthaldehyde, followed by complexation with boron difluoride (BF2) to yield CNB1 and CNB2, respectively. While the parent Schiff bases exhibited no CPL, BF2 coordination induced strong CPL signals in solution. Remarkably, upon aggregation in a mixed solvent system, CNB2 displayed enhanced and inverted CPL, whereas its isomer CNB1 showed attenuated emission. Through comprehensive characterization and singlecrystal analysis, we attribute this divergent behavior to distinct molecular packing modes: CNB2 forms tightly stacked aggregates with efficient π─π interactions, while CNB1 adopts a less ordered arrangement. This study establishes a clear correlation between subtle structural modifications, supramolecular packing, and CPL performance, offering a rational strategy for tailoring chiroptical properties through precise molecular design and controlled self-assembly.
Collapse
Affiliation(s)
- Sipeng Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengfu Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenchao Hao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
García-Cerezo P, Codesal MD, David AHG, Le Bras L, Abid S, Li X, Miguel D, Kazem-Rostami M, Champagne B, Campaña AG, Stoddart JF, Blanco V. Acid/Base-Responsive Circularly Polarized Luminescence Emitters with Configurationally Stable Nitrogen Stereogenic Centers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417326. [PMID: 40371460 DOI: 10.1002/adma.202417326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/08/2025] [Indexed: 05/16/2025]
Abstract
A way to prevent the fast configurational interconversion of tertiary amines is to invoke Tröger's base analogs, which display methano- or ethano-bridged diazocine cores fused to aromatic rings. These derivatives are configurationally stable, even in acidic media when their structures bear ethylene bridges. Here, a two- to three-step synthesis is presented of methano- and ethano-bridged Tröger's base analogs with two peripheral fluorophores, i.e., anthracene, pyrene, and 9,9-dimethylfluorene units. These compounds, possessing two nitrogen stereogenic centers, exhibit good circularly polarized luminescence (CPL) dissymmetry factors (|glum| up to 1.2 × 10-3) and brightnesses (BCPL up to 26.3 M-1 cm-1), as well as excellent fluorescence quantum yields, demonstrating the Tröger´s base core to be a convenient scaffold to prepare CPL emitters upon functionalization with simple achiral fluorophores. Furthermore, the configurationally stable ethano-bridged Tröger's base analogs are employed to modulate their CPL response, generating a CPL switch through their protonation/deprotonation by consecutive additions of acid and base. The reversibility of the switching process is demonstrated for two cycles without altering the CPL performance of the molecule. It is believed that this straightforward and efficient approach to building CPL emitters employing the Tröger's base core could lead to its incorporation in CPL-based sensors and materials.
Collapse
Affiliation(s)
- Pablo García-Cerezo
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - Marcos D Codesal
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Laboratoire MOLTECH-Anjou (UMR CNRS 6200), Université Angers, 2 Bd Lavoisier, Angers Cedex, 49045, France
| | - Laura Le Bras
- CNRS, Chrono-environnement (UMR 6249), Université Marie et Louis Pasteur, Besançon, F-25000, France
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, University of Wyoming, Laramie, WY, 82072, USA
| | - Delia Miguel
- Nanoscopy-UGR Laboratory. Physical Chemistry Department, UEQ, Faculty of Pharmacy, University of Granada, C. U. Cartuja, Granada, 18071, Spain
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Araceli G Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, The University of Hong Kong, Hong Kong, SAR, 999077, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, Hangzhou, 311215, China
- Center for Regenerative Medicine and Department of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Victor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| |
Collapse
|
3
|
Zhang XQ, Lv XJ, Guo L, Ma J, Su B, Hu Y, Jiao L, Li ZY, Hao E. Phase-transfer-catalyst enabled enantioselective C-N coupling to access chiral boron-stereogenic BODIPYs. Nat Commun 2025; 16:2735. [PMID: 40108193 PMCID: PMC11923064 DOI: 10.1038/s41467-025-58117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Tetracoordinate boron-based fluorescent materials have shown extensively applications in chemistry, biology and materials science owing to their unique optoelectronic properties. However, constructing chiral boron-stereogenic fluorophores through practical and universal strategies remains rare and challenging. Herein, as a proof of concept, we report an enantioselective postfunctionalization of boron dipyrromethene dyes (BODIPYs), to acess boron-stereogenic BODIPYs in moderate to good yields with commendable enantioselectivity. Chiral BODIPYs have attracted increasing attention owing to not only their distinctively photophysical properties and applications in circularly polarized luminescence (CPL) materials, but also diversely structural modification. In this·work, we present a phase-transfer-catalyst enabled enantioselective C-N coupling reaction of BODIPYs with diverse nucleophiles. This method serves as a practical SNAr (nucleophilic aromatic substitution reaction) route to achieve a series of boron-stereogenic amido/amino BODIPYs as well as demonstrates their promising CD and·CPL·activities, excellent biocompatibility, and high specificities, showing potential applications as chiral fluorescent imaging agents.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Xiao-Juan Lv
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Luying Guo
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Juan Ma
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Bin Su
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China.
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China.
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China.
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
4
|
Chen C, Zhang S. Symmetry Breaking: Case Studies with Organic Cage-Racemates. Acc Chem Res 2025; 58:583-598. [PMID: 39873624 DOI: 10.1021/acs.accounts.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology. Chemistry is particularly rich in symmetry breaking studies, encompassing areas such as asymmetric synthesis, chiral resolution, chiral structure assembly, and so on. Across different disciplines, a well-defined methodology is fundamental and necessary to analyze the symmetry or symmetry breaking nature behind the phenomenon, enabling researchers to uncover the underlying principles and mechanisms. Basically, three key points underpin symmetry-related research: the scale-dependency of symmetry/symmetry breaking, the driving force behind symmetry breaking phenomena, and the properties arising from symmetry breaking.This Account will focus on the three aforementioned key points elucidated with organic cages as proof-of-concept models, as organic cages exhibit shape-persistent 3D molecular frameworks, well-defined molecular motion, and a high propensity for crystallization.First, we examine racemization processes of organic cages with dynamic molecular motions to illustrate that symmetry and symmetry breaking are time-scale-dependent. Specifically, the racemization, driven by molecular motion, is influenced by hydrogen bonding and the rigidity of the cage framework, which may or may not be observable within the experimental temporal scale. This determines whether the enantiomeric excess system, namely, the symmetry broken system, can be detected experimentally. We also investigate the hierarchical structures self-assembled by racemic organic cages, demonstrating that symmetry and asymmetry manifest differently across spatial scales, from molecular to supramolecular and macroscopic levels. Second, we discuss the driving force behind spontaneous chiral resolution─a classic symmetry-breaking event during crystallization─from a thermodynamic perspective. We suggest that racemic compounds, compared to conglomerates, are more entropy-favored, explaining their greater prevalence in nature. Spontaneous chiral resolution can take place only when a favorable enthalpy compensates for unfavorable entropy. In conglomerates composed of organic cages, strong intermolecular interactions along the screw axes provide the necessary compensation. Finally, we explore the unique properties that emerge from symmetry-broken molecular packing within crystals of cage racemates, such as second-harmonic generation and piezoelectricity. It turns out that the symmetry operation in molecular packing plays a critical role in determining material properties. By comprehensively analyzing symmetry and symmetry-breaking in organic cage racemates, this Account provides insights into symmetry-related phenomena across scientific disciplines. It also paves the way for designing novel materials with tailored properties for applications in optics, electronics, and beyond.
Collapse
Affiliation(s)
- Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Lv J, Sun R, Gao X. Emerging devices based on chiral nanomaterials. NANOSCALE 2025; 17:3585-3599. [PMID: 39750744 DOI: 10.1039/d4nr03998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, etc., been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods. This review tries to offer a whole picture of these state-of-the-art conditions in these fields and offers perspectives on future development.
Collapse
Affiliation(s)
- Jiawei Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rui Sun
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
6
|
Shi C, Xu G, Qiu H, Li Y, Lu X, Jiang J, Wang L. Tröger's base-embedded macrocycles with chirality. Chem Commun (Camb) 2025; 61:2450-2467. [PMID: 39785990 DOI: 10.1039/d4cc05134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The birth and development of supramolecular chemistry have heralded a new era, where macrocycles have become an irreplaceable research tool. Therefore, the construction of novel macrocycles has become a hot spot. Tröger's base (TB), as a fragment with both rigidity and chirality, promises tremendous potential in the realm of supramolecular chemistry, and its unique properties continue to motivate researchers to explore its inclusion in macrocycles. However, the construction of a TB-embedded macrocycle is always difficult due to the frequent occurrence of excessive tension. For successful synthesis, part of the function of TB in macrocycle is often overlooked or sacrificed to facilitate the macrocyclization process, leading to serious deficiencies in the utilization of the functions of TB. Thus, the research on TB-embedded macrocycles is still in its preliminary stage. Hence, in this review, TB-embedded macrocycles are highlighted, focusing not only on the linkers of these macrocycles but also on the correlation between the properties of TB and TB-embedded macrocycles. We hope that this review will further guide the synthesis of more excellent macrocycles.
Collapse
Affiliation(s)
- Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Guangzhou Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Heng Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yumei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Key Lab of Surficial Geochem of MOE, School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiancai Lu
- Key Lab of Surficial Geochem of MOE, School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wang XY, Bai J, Shen YJ, Li ZA, Gong HY. A Carbazole-Centered Expanded Helicene Stabilized with Hexabenzocoronene (HBC) Units. Angew Chem Int Ed Engl 2025; 64:e202417745. [PMID: 39552120 DOI: 10.1002/anie.202417745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The synthesis and stabilization of heteroatom-doped nanocarbon molecules, such as carbazole-containing (super)helicenes, present significant challenges due to the complexities involved in maintaining structural integrity and electronic functionality. In this study, we successfully synthesized a carbazole-centered expanded tris-hexabenzo[7]helicene (1) via a facile FeCl3-mediated Scholl coupling reaction. 1 exhibits both chemical and chiral stability and demonstrates fluorescence at 628 nm with a quantum yield of 0.40. Additionally, the enantiomers of 1 display pronounced chiroptical properties, including a distinct circular dichroism (CD) signal spanning from 300 to 600 nm. The absorption dissymmetry factor (|gabs|) is determined to be 2.98×10-3, while the circularly polarized luminescence brightness (BCPL) is measured as 32.50 M-1 cm-1.
Collapse
Affiliation(s)
- Xin-Yue Wang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Jinku Bai
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Zhi-Ao Li
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| |
Collapse
|
8
|
Ren S, Liu ZF, Li P, Liu H, Lu M, Wang K, Yao J, Dong H, Yang QZ, Zhao YS. Circularly Polarized Lasing from Helical Superstructures of Chiral Organic Molecules. Angew Chem Int Ed Engl 2025; 64:e202415092. [PMID: 39290153 DOI: 10.1002/anie.202415092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.
Collapse
Affiliation(s)
- Shizhe Ren
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Penghao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidi Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaosen Lu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Li P, Zhou Z, Ran G, Zhang T, Jiang Z, Liu H, Zhang W, Yan Y, Yao J, Dong H, Zhao YS. Spin-polarized lasing in manganese doped perovskite microcrystals. Nat Commun 2024; 15:10880. [PMID: 39738058 DOI: 10.1038/s41467-024-55234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Spin-polarized lasers have demonstrated many superiorities over conventional lasers in both performance and functionalities. Hybrid organic-inorganic perovskites are emerging spintronic materials with great potential for advancing spin-polarized laser technology. However, the rapid carrier spin relaxation process in hybrid perovskites presents a major bottleneck for spin-polarized lasing. Here we report the identification and successful suppression of the spin relaxation mechanism in perovskites for the experimental realization of spin-polarized perovskite lasers. The electron-hole exchange interaction is identified as the decisive spin relaxation mechanism hindering the realization of spin-polarized lasing in perovskite microcrystals. An ion doping strategy is employed accordingly to introduce a new energy level in perovskites, which enables a long carrier spin lifetime by suppressing the electron-hole exchange interaction. As a result, spin-polarized lasing is achieved in the doped perovskite microcrystals. Moreover, the doped cation is a magnetic species allowing for the magnetic field control of the spin-polarized perovskite lasing. This work unlocks the potential of perovskites for spin-polarized lasers, providing guidance for the design of perovskites towards spintronic devices.
Collapse
Affiliation(s)
- Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Tongjin Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haidi Liu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Deng Y, Long T, Wang P, Huang H, Deng Z, Gu C, An C, Liao B, Malpuech G, Solnyshkov D, Fu H, Liao Q. Spin-Valley-Locked Electroluminescence for High-Performance Circularly Polarized Organic Light-Emitting Diodes. J Am Chem Soc 2024; 146:30990-30997. [PMID: 39265069 DOI: 10.1021/jacs.4c10020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Circularly polarized (CP) organic light-emitting diodes (OLEDs) have attracted attention in potential applications, including novel display and photonic technologies. However, conventional approaches cannot meet the requirements of device performance, such as high dissymmetry factor, high directionality, narrowband emission, simplified device structure, and low costs. Here, we demonstrate spin-valley-locked CP-OLEDs without chiral emitters but based on photonic spin-orbit coupling, where photons with opposite CP characteristics are emitted from different optical valleys. These spin-valley-locked OLEDs exhibit a narrowband emission of 16 nm, a high external quantum efficiency of 3.65%, a maximum luminance of near 98,000 cd/m2, and a gEL of up to 1.80, which are among the best performances of active single-crystal CP-OLEDs, achieved with a simple device structure. This strategy opens an avenue for practical applications toward three-dimensional displays and on-chip CP-OLEDs.
Collapse
Affiliation(s)
- Yibo Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Teng Long
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Pingyang Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Han Huang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zijian Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chunling Gu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Cunbin An
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Bo Liao
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Guillaume Malpuech
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand F-63000, France
| | - Dmitry Solnyshkov
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand F-63000, France
- Institut Universitaire de France (IUF), Paris 75231, France
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
11
|
Liu ZF, Liu XX, Zhang H, Zeng L, Niu LY, Chen PZ, Fang WH, Peng X, Cui G, Yang QZ. Intense Circularly Polarized Luminescence Induced by Chiral Supramolecular Assembly: The Importance of Intermolecular Electronic Coupling. Angew Chem Int Ed Engl 2024; 63:e202407135. [PMID: 39018249 DOI: 10.1002/anie.202407135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron β-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by single-crystal XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθμ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Xin Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Han Zhang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lan Zeng
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Peng-Zhong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ganglong Cui
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
12
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Ji S, Zeng M, Zhan X, Liu H, Zhou Y, Wang K, Yan Y, Yao J, Zhao YS. Exceptionally High- glum Circularly Polarized Lasers Empowered by Strong 2D-Chiroptical Response in a Host-Guest Supramolecular Microcrystal. J Am Chem Soc 2024; 146:22583-22589. [PMID: 39102645 DOI: 10.1021/jacs.4c06903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Circularly polarized (CP) lasers hold tremendous potential for advancing spin information communication and display technologies. Organic materials are emerging candidates for high-performance CP lasers because of their abundant chiral structures and excellent gain characteristics. However, their dissymmetry factor (glum) in CP emission is typically low due to the weak chiral light matter interactions. Here, we presented an effective approach to significantly amplifying glum by leveraging the intrinsic 2D-chiroptical response of an anisotropic organic supramolecular crystal. The organic complex microcrystal was designed to exhibit large 2D-chiroptical activities through strong coupling interactions between their remarkable linear birefringence (LB) and high degree of fluorescence linear polarization. Such 2D-chiroptical response can be further enhanced by the stimulated emission resulted from an increased degree of linear polarization, yielding a nearly pure CP laser with an exceptionally high glum of up to 1.78. Moreover, exploiting the extreme susceptibility of LB to temperature, we demonstrate a prototype of temperature-controlled chiroptical switches. These findings offer valuable insights for harnessing organic crystals to facilitate the development of high-performance CP lasers and other chiroptical devices.
Collapse
Affiliation(s)
- Shiyang Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiuqin Zhan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haidi Liu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gu MJ, Guo WC, Han XN, Han Y, Chen CF. Macrocycle-Based Charge Transfer Cocrystals with Dynamically Reversible Chiral Self-Sorting Display Chain Length-Selective Vapochromism to Alkyl Ketones. Angew Chem Int Ed Engl 2024; 63:e202407095. [PMID: 38658318 DOI: 10.1002/anie.202407095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Chirality-driven self-sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double-helix structure of DNA from self-recognition by hydrogen bonding. However, achieving precise control over the chiral self-sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene-based charge transfer (CT) cocrystal system with dynamically reversible chiral self-sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length-selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor-induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo- or heterochiral self-sorted assemblies with different alkyl ketone guests, which differ dramatically in solid-state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self-sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self-sorting at the solid-vapor interface deepens the understanding of efficient vapochromic sensors.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Sun C, Zhang X, Xie Y, Zhou Y, Gao X. True and False Chirality in Chiral Magnetic Nanoparticles. J Phys Chem Lett 2024; 15:4679-4685. [PMID: 38656159 DOI: 10.1021/acs.jpclett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Determining the true or false chirality of a system is essential for the design of advanced chiral materials and for improving their applications. Typically, a magnetic field would cause false optical activity in the chiral material system, thus confusing the true chirality's influence. Here, we provide a simple way to uncover the true and false chirality in chiral ferrimagnetic nanoparticles (FNPs) by using the gel as a rigid frame. The remnant local magnetic field of the FNP gel can be easily adjusted by an external magnetic field or by controlling the concentration of the FNPs. Moreover, the potential application of the FNP gel is detected by induced magnetic circularly polarized luminescence. This work provides deep insight into the true and false chirality in magnetic nanosystems and offers a strategy to construct new optic elements with an adjustable local magnetic field.
Collapse
Affiliation(s)
- Chao Sun
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xueyan Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yuyu Xie
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yunlong Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
16
|
Huang W, Zhu Y, Zhou K, Chen L, Zhao Z, Zhao E, He Z. Boosting Circularly Polarized Luminescence from Alkyl-Locked Axial Chirality Scaffold by Restriction of Molecular Motions. Chemistry 2024; 30:e202303667. [PMID: 38057693 DOI: 10.1002/chem.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
17
|
Liu ZF, Ye XY, Chen L, Niu LY, Jin WJ, Zhang S, Yang QZ. Spontaneous Symmetry Breaking of Achiral Molecules Leading to the Formation of Homochiral Superstructures that Exhibit Mechanoluminescence. Angew Chem Int Ed Engl 2024; 63:e202318856. [PMID: 38169084 DOI: 10.1002/anie.202318856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Chirality, with its intrinsic symmetry-breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self-assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure. In this study, we present a series of six achiral molecules, demonstrating that when these conformationally flexible molecules adopt a cis-conformation and engage in multiple non-covalent interactions along a helical path, they collectively self-assemble into chiral superstructures consisting of single-handed supramolecular columns. When these homochiral supramolecular columns align in parallel, they form polar crystals that exhibit intense luminescence upon grinding or scraping. We therefore demonstrate our molecular design strategy could significantly increase the likelihood of symmetry breaking in achiral molecular synthons during self-assembly, offering a facile access to novel chiral crystalline materials with unique optoelectronic properties.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Yi Ye
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei Jun Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
18
|
Huang C, Li J, Zhu X, Wang Y. Chiral metal-organic cages decorated with binaphthalene moieties. NANOSCALE 2023. [PMID: 38015155 DOI: 10.1039/d3nr05170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The construction of chiral nanoobjects with atomically precise nanostructures has attracted much more attention in the past decades. However, this field is still in its early stages. We designed and synthesized a series of chiral ligands containing the binaphthalene moiety and isophthalate module. Then, four chiral metal-organic cages (MOCs) were obtained through the coordination between isophthalate modules and copper ions. These chiral MOCs exhibit discrete, uniform and stable structures, good solubility and photoluminescence behaviors.
Collapse
Affiliation(s)
- Cheng Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Lu H, Wang Y, Hill SK, Jiang H, Ke Y, Huang S, Zheng D, Perrier S, Song Q. Supra-Cyanines: Ultrabright Cyanine-Based Fluorescent Supramolecular Materials in Solution and in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202311224. [PMID: 37840434 DOI: 10.1002/anie.202311224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Fluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching. Supra-cyanines are obtained by incorporating cyanine moieties in a cyclic peptide-based supramolecular scaffold, and exhibit high fluorescence quantum yields (up to 50 %) in both solution and in the solid state. These findings offer a versatile approach for constructing highly emissive cyanine-based supramolecular materials.
Collapse
Affiliation(s)
- Haicheng Lu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqian Wang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sophie K Hill
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Shaohui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101499, China
| | - Dunjin Zheng
- LightEdge Technologies Limited, Zhongshan, 528451, China
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Lee YT, Chen MH, Ho YL, Wang Z, Lee YC, Delaunay JJ. Angular Control of Circularly Polarized Emission from Achiral Molecules via Magnetic Dipoles Sustained in a Chiral Metamirror. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463328 DOI: 10.1021/acsami.3c05717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Circularly polarized emission (CPE) plays an important role in the designs of advanced displays and photonic integrated circuits. Unfortunately, the control of CPE handedness is limited by the chiral metasurfaces employed to emit chiral light. Particularly, the switching of the handedness with chiral metasurfaces relies on flipping the metasurfaces, which adds some constraints to practical applications. Herein, we propose an angle-sensitive chiral metamirror with Mie resonators to realize handedness switching. The Mie resonator supports a magnetic dipole having large field enhancement. This chiral metamirror is applied to excite CPEs with opposite handedness at emission angles within 10°. In contrast to the conventional methods, this work proposes a more efficient approach to manipulate the handedness of CPE.
Collapse
Affiliation(s)
- Ying-Tsung Lee
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mu-Hsin Chen
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ya-Lun Ho
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhiyu Wang
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yang-Chun Lee
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jean-Jacques Delaunay
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|