1
|
Wang Q, Qi Z, Xu H, Li X, Lei Y, Qu DH. Transient cucurbit[7]uril-mediated host-guest complexes for time-dependent fluorescence and information-self-erasing hydrogel. Chem Commun (Camb) 2024; 60:10342-10345. [PMID: 39212465 DOI: 10.1039/d4cc02531h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A non-equilibrium cucurbit[7]uril-mediated supramolecular host-guest system is fabricated by using urea/urease to control aqueous solution pH on time dimension, showing transient assembly behavior and time-dependent fluorescence. The dynamic assembly can be also achieved in hydrogel network, resulting in a time-dependent fluorescent hydrogel for information encryption.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Qi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanren Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianghao Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifan Lei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Pol MD, Dai K, Thomann R, Moser S, Kanti Roy S, Pappas CG. Guiding Transient Peptide Assemblies with Structural Elements Embedded in Abiotic Phosphate Fuels. Angew Chem Int Ed Engl 2024; 63:e202404360. [PMID: 38676693 DOI: 10.1002/anie.202404360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Despite great progress in the construction of non-equilibrium systems, most approaches do not consider the structure of the fuel as a critical element to control the processes. Herein, we show that the amino acid side chains (A, F, Nal) in the structure of abiotic phosphates can direct assembly and reactivity during transient structure formation. The fuels bind covalently to substrates and subsequently influence the structures in the assembly process. We focus on the ways in which the phosphate esters guide structure formation and how structures and reactivity cross regulate when constructing assemblies. Through the chemical functionalization of energy-rich aminoacyl phosphate esters, we are able to control the yield of esters and thioesters upon adding dipeptides containing tyrosine or cysteine residues. The structural elements around the phosphate esters guide the lifetime of the structures formed and their supramolecular assemblies. These properties can be further influenced by the peptide sequence of substrates, incorporating anionic, aliphatic and aromatic residues. Furthermore, we illustrate that oligomerization of esters can be initiated from a single aminoacyl phosphate ester incorporating a tyrosine residue (Y). These findings suggest that activated amino acids with varying reactivity and energy contents can pave the way for designing and fabricating structured fuels.
Collapse
Affiliation(s)
- Mahesh D Pol
- DFG Cluster of Excellence livMatS@FIT-, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Kun Dai
- DFG Cluster of Excellence livMatS@FIT-, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104, Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Subhra Kanti Roy
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Charalampos G Pappas
- DFG Cluster of Excellence livMatS@FIT-, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Su B, Chi T, Chen W, Xian S, Liu D, Addonizio CJ, Xiang Y, Webber MJ. Using a biocatalyzed reaction cycle for transient and pH-dependent host-guest supramolecular hydrogels. J Mater Chem B 2024; 12:4666-4672. [PMID: 38647183 PMCID: PMC11095629 DOI: 10.1039/d4tb00545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.
Collapse
Affiliation(s)
- Bo Su
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Teng Chi
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Weike Chen
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Sijie Xian
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Dongping Liu
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Christopher J Addonizio
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Yuanhui Xiang
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| | - Matthew J Webber
- Department of Chemcial & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
4
|
Yang R, Li Y, Hua C, Sun Y, Li H, Wei B, Dong H, Liu K. Heat-Set Supramolecular Hydrogelation by Regulating the Hydrophilic-Lipophilic Balance for a Tunable Circularly Polarized Luminescent Switch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307948. [PMID: 38016077 DOI: 10.1002/smll.202307948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Indexed: 11/30/2023]
Abstract
Heat-set supramolecular gels exhibited totally opposite phase behaviors of dissolution upon cooling and gelation on heating. They are commonly discovered by chance and their rational design remains a great challenge. Herein, a rational design strategy is proposed to realize heat-set supramolecular hydrogelation through regulation of the hydrophilic-lipophilic balance of the system. A newly synthesized amphiphile hydrogelator with pyrene embedded in its lipophilic terminal can self-assemble into a hydrogel through a heating and cooling cycle. However, the host-guest complex of the gelator and hydrophilic γ-cyclodextrin (γ-CyD) results in a sol at room temperature. Thus, heat-set hydrogelation is realized from the sol state in a controllable manner. Heat-set gelation mechanism is revealed by exploring critical heat-set supramolecular gelation and the related findings provide a general strategy for developing new functional molecular gels with tunable hydrophilic-lipophilic balance.
Collapse
Affiliation(s)
- Rong Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chunxia Hua
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yihuan Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bizhuo Wei
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Zhang X, Mao L, He R, Shi Y, Li L, Li S, Zhu C, Zhang Y, Ma D. Tunable cyclic operation of dissipative molecular switches based on anion recognition. Chem Commun (Camb) 2024; 60:1180-1183. [PMID: 38193867 DOI: 10.1039/d3cc05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Rongjing He
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanting Shi
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lingyi Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Shuo Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Chenghao Zhu
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanjing Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Da Ma
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
7
|
Chen J, Wang H, Long F, Bai S, Wang Y. Dynamic supramolecular hydrogels mediated by chemical reactions. Chem Commun (Camb) 2023; 59:14236-14248. [PMID: 37964743 DOI: 10.1039/d3cc04353c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Supramolecular self-assembly in a biological system is usually dominated by sophisticated metabolic processes (chemical reactions) such as catalysis of enzymes and consumption of high energy chemicals, leading to groups of biomolecules with unique dynamics and functions in an aqueous environment. In recent years, increasing efforts have been made to couple chemical reactions to molecular self-assembly, with the aim of creating supramolecular materials with lifelike properties and functions. In this feature article, after summarising the work of chemical reaction mediated supramolecular hydrogels, we first focus on a typical example where dynamic self-assembly of molecular hydrogels is activated by in situ formation of a hydrazone bond in water. We discuss how the formation of the hydrazone-based supramolecular hydrogels can be controlled in time and space. After that, we describe transient assembly of supramolecular hydrogels powered by out-of-equilibrium chemical reaction networks regulated by chemical fuels, which show unique properties such as finite lifetime, dynamic structures, and regenerative capabilities. Finally, we provide a perspective on the future investigations that need to be done urgently, which range from fundamental research to real-life applications of dynamic supramolecular hydrogels.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Feng Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
8
|
Lou XY, Zhang S, Wang Y, Yang YW. Smart organic materials based on macrocycle hosts. Chem Soc Rev 2023; 52:6644-6663. [PMID: 37661759 DOI: 10.1039/d3cs00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Innovative design of smart organic materials is of great importance for the advancement of modern technology. Macrocycle hosts, possessing cyclic skeletons, intrinsic cavities, and specific guest binding properties, have demonstrated pronounced potential for the elaborate fabrication of a variety of functional organic materials with smart stimuli-responsive characteristics. In this tutorial review, we outline the current development of smart organic materials based on macrocycle hosts as key building blocks, focusing on the design principles and functional mechanisms of the tailored systems. Three main types of macrocycle-based smart organic materials are exemplified as follows according to the distinct forms of construction patterns: (1) supramolecular polymeric materials and nanoassemblies; (2) adaptive molecular crystals; (3) smart porous organic materials. The responsive performances of macrocycle-containing smart materials in versatile aspects, including mechanically adaptive polymers, soft optoelectronic devices, data encryption, drug delivery systems, artificial transmembrane channels, crystalline-state gas adsorption/separation, and fluorescence sensing, are illustrated by discussing the representative studies as paradigms, where the roles of macrocycles in these systems are highlighted. We also provide in the conclusion part the perspectives and remaining challenges in this burgeoning field.
Collapse
Affiliation(s)
- Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Siyuan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
9
|
Spitzbarth B, Eelkema R. Chemical reaction networks based on conjugate additions on β'-substituted Michael acceptors. Chem Commun (Camb) 2023; 59:11174-11187. [PMID: 37529876 PMCID: PMC10508045 DOI: 10.1039/d3cc02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Over the last few decades, the study of more complex, chemical systems closer to those found in nature, and the interactions within those systems, has grown immensely. Despite great efforts, the need for new, versatile, and robust chemistry to apply in CRNs remains. In this Feature Article, we give a brief overview over previous developments in the field of systems chemistry and how β'-substituted Michael acceptors (MAs) can be a great addition to the systems chemist's toolbox. We illustrate their versatility by showcasing a range of examples of applying β'-substituted MAs in CRNs, both as chemical signals and as substrates, to open up the path to many applications ranging from responsive materials, to pathway control in CRNs, drug delivery, analyte detection, and beyond.
Collapse
Affiliation(s)
- Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|