1
|
Hou M, Li W, Cen J, Pan W, Deng Z, Hu J, Liu S. Insight into Lysine Selection via Controlled Degradation of 2,4-Diaminobutyric Acid and Ornithine Polypeptides. Angew Chem Int Ed Engl 2025:e202502629. [PMID: 40355379 DOI: 10.1002/anie.202502629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
The selection of twenty canonical amino acids in protein synthesis is well-established, yet the reasons behind their natural selection remain unclear. Specifically, why structurally similar analogs, such as L-2,4-diaminobutyric acid (Dab) and L-ornithine (Orn), are not chosen over L-lysine (Lys) is unknown. These analogs differ only in alkyl chain length, raising the question of whether such variations influence polypeptide stability and natural selection. To investigate how unnatural amino acids affect the stability of synthesized polypeptides, we present the efficient synthesis of o-nitrobenzyl (NB) carbamate-caged photo-responsive polypeptide amphiphiles based on Dab and Orn via polymerization of N-phenoxycarbonyl-functionalized amino acid precursors. Depending on the self-assembly methods, these poly(ethylene glycol) (PEG)-b-polypeptide hybrid block copolymers formed various nanostructures, including two-dimensional discs and oblate vesicles. Upon photoirradiation, the newly liberated primary amines underwent spontaneous cyclization with backbone amide linkages to generate thermodynamically stable 5- or 6-membered lactams. Such a backbone degradation process eventually led to the disassembly and disintegration of the assemblies. These findings provide new insights into the natural selection of Lys, and open new possibilities for creating functional polypeptide-based materials in drug delivery, tissue engineering, and other biomedical applications.
Collapse
Affiliation(s)
- Mingxuan Hou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Wenjin Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Wenhao Pan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu Province, 215123, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhengyu Deng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu Province, 215123, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
2
|
Weerasinghe MASN, Nwoko T, Konkolewicz D. Polymers and light: a love-hate relationship. Chem Sci 2025; 16:5326-5352. [PMID: 40103712 PMCID: PMC11912025 DOI: 10.1039/d5sc00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
The study of the interaction between polymers and light has significantly bloomed over the past few years in various fundamental research and applications. The relationship between polymers and light can be beneficial (we refer to this as "love") or be destructive (we refer to this as "hate"). It is important to understand the nature of both these love and hate relationships between polymers and light to apply these concepts in various future systems, to surpass performance of existing materials, or to mitigate some problems associated with polymers. Therefore, this perspective highlights both the photophilic (e.g., photopolymerization, rate modulation, temporal/spatial control, drug delivery, waste management, photo functionalization, and photo-enhanced depolymerization) and photophobic (e.g., photodegradation, discoloration, optical density, and loss of functionality) nature of polymers.
Collapse
Affiliation(s)
| | - Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| |
Collapse
|
3
|
Kubota H, Ouchi M. Design of sec-Benzyl Vinyl Ethers toward the Synthesis of Alternating Copolymers Composed of Vinyl Alcohol and Vinyl Ether Units. ACS Macro Lett 2024; 13:429-434. [PMID: 38546013 DOI: 10.1021/acsmacrolett.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In this work, we designed benzyl vinyl ethers carrying alkyl substituents at the benzyl position (i.e., sec-BnVEs) as bulky, reactive, and transformable monomers to realize the alternating cationic copolymerization with an alkyl vinyl ether (VE). In particular, the isopropyl substitution caused not only the bulkiness to suppress the successive propagation but also an enhancement of the vinyl group reactivity to promote crossover propagation with a less bulky VE comonomer. The isopropyl-substituted BnVE (iPr-BnVE) underwent living cationic alternating copolymerization with n-butyl VE (nBVE), and the alternating propagation was strongly suggested by the reactivity ratios. The subsequent deprotection of the sec-benzyl pendant afforded the vinyl alcohol (VA)-nBVE alternating copolymer, and the corresponding statistical copolymer was also synthesized by using the nonsubstituted monomer (BnVE) instead of iPr-BnVE. The alternating copolymer exhibited a higher glass transition temperature, which likely stems from the uniform and efficient hydrogen-bonding formation due to the periodic sequence.
Collapse
Affiliation(s)
- Hiroyuki Kubota
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Kuroda K, Ouchi M. Umpolung Isomerization in Radical Copolymerization of Benzyl Vinyl Ether with Pentafluorophenylacrylate Leading to Degradable AAB Periodic Copolymers. Angew Chem Int Ed Engl 2024; 63:e202316875. [PMID: 37971837 DOI: 10.1002/anie.202316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
This study revealed that benzyl vinyl ether (BnVE) shows a peculiar isomerization propagation in its radical copolymerization with an electron-deficient acrylate carrying a pentafluorophenyl group (PFA). The co-monomer pair inherently exhibits the cross-over propagation feature due to the large difference in the electron density. However, the radical species of PFA was found to undergo a backward isomerization to the penultimate BnVE pendant giving a benzyl radical species prior to propagation with BnVE. The isomerization brings a drastic change in the character of the growing radical species from electrophilic to nucleophilic, and thus the isomerized benzyl radial species propagates with PFA. Consequently, the two monomers were consumed in the order AAB (A: PFA; B: BnVE) and the unique periodic consumption was confirmed by the pseudo-reactivity ratios calculated by the penultimate model: r11 =0.174 and r21 =6600 for PFA (M1 ) with BnVE (M2 ). The pentafluorophenyl ester groups of the resulting copolymers are transformed into ester and amide groups by post-polymerization alcoholysis and aminolysis modifications. The unique isomerization in the AAB sequence allowed the periodic introduction of a benzyl ether structure in the backbone leading to efficient degradation under acid conditions.
Collapse
Affiliation(s)
- Keita Kuroda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
5
|
Liu H, Guo Z, Ma W, Li S, Wang D, Zheng Z, Liu Y, Yu CY, Wei H. UV Irradiation-Induced Cyclic-to-Linear Topological Changes of a Light/pH Dual-Sensitive Cyclic Copolymer for Enhanced Drug Delivery. ACS Macro Lett 2023; 12:1025-1030. [PMID: 37432938 DOI: 10.1021/acsmacrolett.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Cyclic polymers with cleavable backbones triggered by either external or internal stimuli can realize simultaneous extracellular stability and intracellular destabilization of cyclic polymer-based nanocarriers but remain seldom reported. To this end, we prepared herein cyclic-ONB-P(OEGMA-st-DMAEMA) (c-ONB-P(OEGMA-st-DMAEMA)) with a light-cleavable junction in the polymer backbone based on oligo (ethylene glycol) monomethyl ether methacrylate (OEGMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA) using a light-cleavable atom transfer radical polymerization (ATRP) initiator containing an o-nitrobenzyl (ONB) ester group. Together with the pH-sensitivity of DMAEMA, c-ONB-P(OEGMA-st-DMAEMA) shows a light-cleavable mainchain and pH-sensitive side chains. Notably, doxorubicin (DOX)-loaded c-ONB-P(OEGMA4-st-DMAEMA38) (C2) micelles mediated an IC50 value of 2.28 μg/mL in Bel-7402 cells, which is 1.7-fold lower than that acquired without UV irradiation. This study thus reported the synthesis of a cyclic copolymer with a UV-cleavable backbone and uncovered the effects of topological modulation on the in vitro controlled release properties of cyclic polymers.
Collapse
Affiliation(s)
- Hongbing Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Zheng Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Shuang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|