1
|
Wang L, She Y, Xiao J, Li ZH, Zhang SY, Lian PF, Ding TM, Zhang SY. Allylic C-H oxygenation of unactivated internal olefins by the Cu/azodiformate catalyst system. Nat Commun 2025; 16:870. [PMID: 39833256 PMCID: PMC11756401 DOI: 10.1038/s41467-025-56230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation. Key advances include the use of a Cu/Azodiformate catalyst system to facilitate remote allylic C-H activation and the achievement of excellent chemoselectivity through a dynamic ligand exchange strategy using a bis(sulfonamide) ligand. This method features a broad substrate scope and functional group tolerance, successfully applied to the synthesis of various challenging medium-sized cyclic ethers (7-10 members) and large-ring lactones (14-20 members), with high regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuan She
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jie Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shen-Yuan Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Bi T, Cui Y, Liu S, Yu H, Qiu W, Hou KQ, Zou J, Yu Z, Zhang F, Xu Z, Zhang J, Xu X, Yang W. Ligand-Enabled Pd-Catalyzed sp 3 C-H Macrocyclization: Synthesis and Evaluation of Macrocyclic Sulfonamide for the Treatment of Parkinson's Disease. Angew Chem Int Ed Engl 2024; 63:e202412296. [PMID: 39078406 DOI: 10.1002/anie.202412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The development of simplified synthetic strategy to create structurally and functionally diverse pseudo-natural macrocyclic molecules is highly appealing but poses a marked challenge. Inspired by natural scaffolds, herein, we describe a practical and concise ligand-enabled Pd(II)-catalyzed sp3 C-H alkylation, olefination and arylation macrocyclization, which could offer a novel set of pseudo-natural macrocyclic sulfonamides. Interestingly, the potential of ligand acceleration in C-H activation is also demonstrated by an unprecedented enantioselective sp3 C-H alkylation macrocyclization. Moreover, a combination of in silico screening and biological evaluation led to the identification of a novel spiro-grafted macrocyclic sulfonamide 2 a, which showed a promising efficacy for the treatment of Parkinson's disease (PD) in a mouse model through the activation of silent information regulator sirtuin 3 (SIRT3).
Collapse
Affiliation(s)
- Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxia Cui
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiyue Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weirong Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ke-Qiang Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Zhipeng Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Feili Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojun Xu
- Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Brudy C, Walz C, Spiske M, Dreizler JK, Hausch F. The Missing Link(er): A Roadmap to Macrocyclization in Drug Discovery. J Med Chem 2024; 67:14768-14785. [PMID: 39171975 DOI: 10.1021/acs.jmedchem.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Macrocycles are one of nature's preferred choices to generate large but cell-permeable bioactive molecules. Macrocyclization is increasingly prominent in medicinal chemistry beyond natural products, especially for difficult-to-drug targets. However, strategies to best exploit the potential of macrocycles are only beginning to emerge. Here we survey drug discovery campaigns from the past decade that cumulated in advanced macrocyclic drug-like compounds or drug candidates. Most macrocycles were conceived by ring closing based on U- or C-shaped bioactive conformations observed in co-crystal structures. We focus on the key step from linear precursors to the first macrocycle and the follow-up optimization of the resulting macrocyclic scaffold. Conformational control recurrently emerged as a key factor for macrocycle properties and linkers as an opportunity for optimization. With increasingly challenging drug targets, we expect these trends to become more prominent and relevant.
Collapse
Affiliation(s)
- Christian Brudy
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Carlo Walz
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Spiske
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Johannes K Dreizler
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Yin F, Chen Y, Luo Z, Li S, Zhang Y, Wan S, Li X, Kong L, Wang X. Regioselective Olefination and Arylation of Arene-Tethered Diols Using the Easily Foldable Directing Groups. Org Lett 2024; 26:1463-1467. [PMID: 38349252 DOI: 10.1021/acs.orglett.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Arene-tethered diols constitute a valuable class of structural motifs of drug and bioactive natural product molecules. In this study, a regioselective protocol for olefination and arylation of arene-tethered 1,2-diols and 1,3-diols has been developed using easily foldable acetal structures for attaching pyridine and nitrile directing groups. The method overcomes the steric hindrance effect of the short-chain diols and affords products in high yield and regioselectivity. This efficient cascaded catalysis has been successfully utilized in the syntheses of natural products such as peucedanol, decursinol, and marmesin.
Collapse
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yifan Chen
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shang Li
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Siyuan Wan
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xinxin Li
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|