1
|
Chen Z, Jin X, Shen R, Li W, Sun L, Su J, Qu DH, Zhang Z, Tian H. Capturing the Progressive Conformational Evolutions of Sterically-Congested Dihydrophenazines via Crystallization. Angew Chem Int Ed Engl 2025; 64:e202424597. [PMID: 39930977 DOI: 10.1002/anie.202424597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Indexed: 02/19/2025]
Abstract
To gain a deeper understanding of the sequential multistep excited-state structural evolutions of N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) luminophores, we strategically freeze distinct conformations by crystallization, allowing to capture the progressive conformational transformations within a DPAC-based framework by utilizing single-crystal X-ray diffractometry. Our focus lies in the innovative modification of DPAC via the synthesis of cyano (CN)-substituted derivatives DPAC-nCN (n=1-4, with n indicating the number of CN groups). The incorporation of electron-withdrawing CN groups modulates electron delocalization and lowers energy barriers, facilitating access to conformational polymorphism within the crystals. Unlike the limited diversity observed in the crystallization behaviour of DPAC, the DPAC-2CN to DPAC-4CN derivatives exhibit distinct crystalline forms, with conformational diversity increasing in tandem with the number of CN substituents. Notably, the single DPAC-4CN molecule features multi-colored crystals transitioning from blue to red, with the folding angle of the polycyclic dihydrodibenzo[a,c]phenazine ring progressive varying from ~130° to ~172°. Additionally, DPAC-4CN's red crystals with high-energy planar conformation (~172°) can experience a sudden jumping when subjected to stimuli. This study not only advances the understanding of conformational dynamics in dihydrophenazines but also paves a new way for the development of dynamic crystal materials.
Collapse
Affiliation(s)
- Ziyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Ruizi Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Wen Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Lu Sun
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300071, P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Liu P, Wu MX, Yu ML, Kang H, Huang B, Yang HB, Zhao XL, Shi X. Synthesis of Polycyclic Aromatic Compounds by Electrocyclization-Dehydrogenation of Diradicaloids. Org Lett 2024; 26:7914-7919. [PMID: 39240235 DOI: 10.1021/acs.orglett.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we present a novel and efficient method for the synthesis of two new polycyclic aromatic hydrocarbons, 1 and 2, through the electrocyclization-dehydrogenation of diradicaloids. The proposed oxidative electrocyclization via intermediate diradicaloids is monitored by electron paramagnetic resonance and ultraviolet-visible spectroscopy. Interestingly, 1 exhibits chirality because of its inherent helical skeleton, and 2 features long-wavelength absorption and near-infrared emission properties due to its extended π-conjugation.
Collapse
Affiliation(s)
- Peipei Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Ling Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hao Kang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Rana SS, Choudhury J. Orchestrated Octuple C-H Activation: A Bottom-Up Topology Engineering Approach toward Stimuli-Responsive Double-Heptagon-Embedded Wavy Polycyclic Heteroaromatics. Angew Chem Int Ed Engl 2024; 63:e202406514. [PMID: 38758986 DOI: 10.1002/anie.202406514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Curiosity-driven innovations on the design and synthesis of nonplanar polycyclic aromatic/heteroaromatic compounds with new molecular topologies unfold exciting opportunities for harnessing their intriguing supramolecular properties and thereby the development of novel functional organic materials. This work presents such an innovative synthetic concept of a bottom-up molecular topology engineering through a unique orchestrated octuple C-H activation reaction, toward the rapid synthesis of a novel class of double heptagon-incorporated nitrogen-doped laterally-fused polycyclic compounds with rarely reported wavy structural configuration. The profound impact of the molecular wavy structures of these compounds on their properties is manifested by weak and tunable solid-state intermolecular interactions controlling the electronic properties of the materials, leading to reversibly switchable fluorochromism in the solid state and thin films with mechanical force and solvent vapors as external stimuli, thereby indicating their potential applicability in rewritable fluorescent optical recording media, security papers, mechanosensors, volatile organic compound (VOC) sensors etc.
Collapse
Affiliation(s)
- Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| |
Collapse
|
4
|
Liu X, Jin Z, Qiu F, Guo Y, Chen Y, Sun Z, Zhang L. Hexabenzoheptacene: A Longitudinally Multihelicene Nanocarbon with Local Aromaticity and Enhanced Stability. Angew Chem Int Ed Engl 2024; 63:e202407547. [PMID: 38725308 DOI: 10.1002/anie.202407547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 06/13/2024]
Abstract
We report the synthesis of a longitudinally helical molecular nanocarbon, hexabenzoheptacene (HBH), along with its dimethylated derivative (HBH-Me), which are composed of six benzene rings periodically benzannulated to both zigzag edges of a heptacene core. This benzannulation pattern endows the resulting nanocarbons with a helical heptacene core and local aromaticity, imparting enhanced solubility and stability to the system. The chiral HBH-Me adopts a more highly twisted conformation with an end-to-end twist angle of 95°, enabling the separation of the enantiomers. Both HBH and HBH-Me can be facilely oxidized into their corresponding dications, which exhibit enhanced planarity and aromaticity upon loss of electrons. Notably, both longitudinally helical nanocarbons readily promote solid state packing into two-dimensional (2D) arrangement. Single-crystal microbelts of HBH-Me show hole mobility up to 0.62 cm2 V-1 s-1, illustrating the promising potential of these longitudinally helical molecules for organic electronic devices.
Collapse
Affiliation(s)
- Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fei Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Shil S, Bhattacharya D, Misra A, Bytautas L. Antiaromatic Molecules as Magnetic Couplers: A Computational Quest. J Phys Chem A 2024; 128:815-828. [PMID: 38267395 PMCID: PMC10860145 DOI: 10.1021/acs.jpca.3c05784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
In this study, we investigate a set of organic diradical structures in which two oxo-verdazyl radicals are selected as radical spin centers that are connected (coupled) via six coupler molecules (CM), resulting in various magnetic (ferromagnetic (FM) or antiferromagnetic (AFM)) characteristics, as reflected by their exchange coupling constants (J). We have designed 12 diradicals with 6-antiaromatic couplers coupled with bis-oxo-verdazyl diradicals with meta-meta (m-m) and para-meta (p-m) positional connectivities. The nature of the magnetic coupling (ferromagnetic, nonmagnetic, or antiferromagnetic) and the magnitude of the exchange constant J depend on the type of coupler, the connecting point between each radical center and CM, the degree of aromaticity of the coupler, and the length of the through-bond distance between radical centers. The computed magnetic exchange coupling constants J for these diradicals at the B3LYP/6-311++G(d,p) and MN12SX/6-311++G(d,p) levels of theory are large for many of these structures, indicating strong ferromagnetic coupling (with positive J values). In some cases, magnetic couplings are observed with J > 1000 cm-1 (B3LYP/6-311++G(d,p)) and strong antiferromagnetic coupling (with negative J values) with J < -1000 cm-1 (B3LYP/6-311++G(d,p)). Similarly, in some cases, magnetic couplings are observed with J > 289 cm-1 (MN12SX/6-311++G(d,p)) and strong antiferromagnetic coupling (with negative J values) with J < -568 cm-1 (MN12SX/6-311++G(d,p)). Furthermore, while numerous studies have reported that the degree of aromaticity of molecular couplers often favors strong ferromagnetic coupling, displaying the high-spin character of diradicals in their ground states, the couplers chosen in this study are characterized as antiaromatic or nonaromatic. The current investigation provides evidence that, remarkably, antiaromatic couplers are able to enhance stability by favoring electronic diradical structures with very strong ferromagnetic coupling when the length of the through-bond distance and connectivity pattern between radical centers are selected in such a way that the FM coupling is optimized. The findings in this study offer new strategies in the design of novel organic materials with interesting magnetic properties for practical applications.
Collapse
Affiliation(s)
- Suranjan Shil
- Manipal
Centre for Natural Sciences (Centre of Excellence), Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Anirban Misra
- Department
of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Laimutis Bytautas
- Department
of Chemistry, Galveston College, 4015 Avenue Q, Galveston, Texas 77550, United States
| |
Collapse
|
7
|
Wang K, Rao Y, Xu L, Zhou M, Aratani N, Osuka A, Song J. Post-Installation of Fused Benzoheptagons at the Periphery of NiII Porphyrins: Helical Structures and Conformation-Adjustable Fullerenes Binding. Chemistry 2023; 29:e202301955. [PMID: 37518990 DOI: 10.1002/chem.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Fused-benzoheptagon-installed NiII porphyrins were synthesized by a protocol consisting of (2-formyl)arylation at the meso-position(s) of NiII porphyrins, conversion of formyl group to methoxyethene group by Wittig reaction, and final Bi(OTf)3 -catalyzed cyclization. The structures of these porphyrins have been revealed by X-ray analysis. Owing to the installed heptagon ring(s), these porphyrins show curved structures with conformational flexibility. Dimer has been shown to have a small activation barrier for inversion and to capture C60 and C70 with large association constants with adjustable conformational changes.
Collapse
Affiliation(s)
- Kaisheng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yutao Rao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Atsuhiro Osuka
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
8
|
Qi Z, Shang H, Ji B, Shi Y, Ye T, Li Y, Xiao J. Heptagon-Embedded Helicene Derivatives: Synthesis, Crystal Structural Analyses, and Circularly Polarized Luminescence. J Org Chem 2023; 88:14550-14558. [PMID: 37812747 DOI: 10.1021/acs.joc.3c01563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Two pairs of isomers of heptagon-embedded helical arenes (3/6 and 10/13) have been strategically prepared, where the molecular structures of 3 and 13 have been identified through single crystal X-ray diffraction analysis. The effect of the heptagon unit on the physical properties of 3, 6, 10, and 13 is investigated in a comparative manner, and the results indicate that the optical enantiomers of 13 obtained from HPLC exhibit promising chiroptical properties.
Collapse
Affiliation(s)
- Zewei Qi
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Honglin Shang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Bingliang Ji
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yanwei Shi
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Tongtong Ye
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yiming Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | | |
Collapse
|
9
|
Fu L, Liu P, Xue R, Tang XY, Cao J, Yao ZF, Liu Y, Yan S, Wang XY. Unravelling the Superiority of Nonbenzenoid Acepleiadylene as a Building Block for Organic Semiconducting Materials. Angew Chem Int Ed Engl 2023; 62:e202306509. [PMID: 37417837 DOI: 10.1002/anie.202306509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
Acepleiadylene (APD), a nonbenzenoid isomer of pyrene, exhibits a unique charge-separated character with a large molecular dipole and a small optical gap. However, APD has never been explored in optoelectronic materials to take advantage of these appealing properties. Here, we employ APD as a building block in organic semiconducting materials for the first time, and unravel the superiority of nonbenzenoid APD in electronic applications. We have synthesized an APD derivative (APD-IID) with APD as the terminal donor moieties and isoindigo (IID) as the acceptor core. Theoretical and experimental investigations reveal that APD-IID has an obvious charge-separated structure and enhanced intermolecular interactions as compared with its pyrene-based isomers. As a result, APD-IID displays significantly higher hole mobilities than those of the pyrene-based counterparts. These results imply the advantages of employing APD in semiconducting materials and great potential of nonbenzenoid polycyclic arenes for optoelectronic applications.
Collapse
Affiliation(s)
- Lin Fu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Pengcai Liu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Rui Xue
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xiao-Yu Tang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jiawen Cao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, USA
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| |
Collapse
|