1
|
Ravikumar AK, Nishimura T, Taniguchi T, Maeda K. Optically active poly(diphenylacetylene)s showing solvent-dependent helix inversion accompanied by modulation of helix inversion barriers. Chem Commun (Camb) 2024; 60:8379-8382. [PMID: 38984457 DOI: 10.1039/d4cc02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Symmetrically substituted poly(diphenylacetylene)s bearing optically active 2-octyloxycarbonyl groups at the para-positions of the pendant phenyl rings not only show a unique solvent-dependent helix inversion to afford diastereomeric right- and left-handed helical polymers but also significant unprecedented solvent-dependent changes in the helix inversion barrier of the polymer backbone resulting in switching between static or dynamic behavior of the helical polymers at approximately room temperature depending on the solvents used.
Collapse
Affiliation(s)
- Abilesh Kumar Ravikumar
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Russell JB, Konar D, Keller TM, Gau MR, Carroll PJ, Telser J, Lester DW, Veige AS, Sumerlin BS, Mindiola DJ. Metallacyclobuta-(2,3)-diene: A Bidentate Ligand for Stream-line Synthesis of First Row Transition Metal Catalysts for Cyclic Polymerization of Phenylacetylene. Angew Chem Int Ed Engl 2024; 63:e202318956. [PMID: 38109203 DOI: 10.1002/anie.202318956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2 -C,C-(Me3 SiC3 SiMe3 )}] (2-M) (BDI=[ArNC(CH3 )]2 CH- , Ar=2,6-i Pr2 C6 H3 ; M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2 ] (1-M, M=Ti, V) with 1,3-dilithioallene [Li2 (Me3 SiC3 SiMe3 )]. Complexes 2-M have been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size-exclusion chromatography (SEC) and intrinsic viscosity studies. Two-electron oxidation of 2-V with nitrous oxide (N2 O) cleanly yields a [VV ] alkylidene-alkynyl oxo complex [(BDI)V(=O){κ1 -C-(=C(SiMe3 )CC(SiMe3 ))}] (3), which lends support for how this scaffold in 2-M might be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3-dianionic allene as a segue into M-C multiple bonds.
Collapse
Affiliation(s)
- John B Russell
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA
| | - Debabrata Konar
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA) E-mail: s
| | - Taylor M Keller
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Daniel W Lester
- Polymer Characterization Research Technology Platform, University of Warwick, Coventry, CV4 7AL, UK
| | - Adam S Veige
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA) E-mail: s
| | - Brent S Sumerlin
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA) E-mail: s
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA
| |
Collapse
|