1
|
Zhou Y, Chang R, Yang Z, Guo Q, Wang M, Jia B, Li B, Deng B, Ren Y, Zhu H, Wang X, Wang Q, Wen H, Zhang H, Yu J, Chen YX, Liu K. Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures. J Am Chem Soc 2025; 147:2335-2349. [PMID: 39787294 DOI: 10.1021/jacs.4c10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks. These nanoframeworks effectively coassemble with elastin-derived positively charged proteins (PCP), resulting in complex coacervate-based adhesives with hierarchical structures. Our method enables the controlled regulation of both cohesion and adhesion properties in the adhesives. Notably, the complex adhesives formed by the dityrosine-containing peptide and PCP demonstrate an exceptional interfacial adhesion strength of up to 30 MPa, outperforming most known supramolecular adhesives and rivaling cross-linked chemical adhesives. Additionally, these adhesives show promising biocompatibility and bioactivity, making them suitable for applications such as visceral hemostasis and tissue repair. Our findings highlight the utility of bioinspired hierarchical assembly combined with bioengineering techniques in advancing biomedical adhesives.
Collapse
Affiliation(s)
- Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenyue Yang
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, China
| | - Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bodan Deng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaxia Zhu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | - Han Wen
- DP Technology, Beijing 100089, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Jing Yu
- Mechano-X Institute, Tsinghua University, Beijing 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
2
|
Liu Z, Li H, Li J, Yu J, Liu K. Engineered protein elastomeric materials. Chem Commun (Camb) 2024; 60:11267-11274. [PMID: 39258457 DOI: 10.1039/d4cc02905d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural evolution endows some insects and marine organisms with a special class of protein-based elastic tissues that possess energy feedback characteristics, providing them with the foundation for jumping and flying, and protecting them from the damage caused by movements or waves. However, the design and fabrication of such protein-based elastomeric materials that can function in human society through biomimetic strategies still remains challenging. Recombinant proteins designed by synthetic biology can mimic the advantageous structures in natural proteins and can be biosynthesized without the requirements for harsh conditions such as high temperatures and cytotoxic agents, which provides a great opportunity to prepare protein-based elastomeric materials. In this review, starting from the design of protein molecules, we highlight an overview of the synthesis of elastomeric materials based on recombinant resilin, recombinant elastin-like proteins and other recombinant folded proteins, etc., and then demonstrate their application progress in the fields of biomedicine and high technology. Finally, the challenges and prospects for the future development of protein-based elastomeric materials are envisioned to provide insights into the design and synthesis of the next generation of protein-based elastomeric materials.
Collapse
Affiliation(s)
- Zhongcheng Liu
- Department of Chemistry, Tsinghua University, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Beijing 100084, P. R. China.
| | - Haopeng Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Beijing 100084, P. R. China.
- Xiangfu Laboratory, Jiaxing 314102, P. R. China
| |
Collapse
|
3
|
Alasadi EA, Choi W, Chen X, Cotruvo JA, Baiz CR. Lanmodulin's EF 2-3 Domain: Insights from Infrared Spectroscopy and Simulations. ACS Chem Biol 2024; 19:1056-1065. [PMID: 38620063 DOI: 10.1021/acschembio.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Lanmodulins are small, ∼110-residue proteins with four EF-hand motifs that demonstrate a picomolar affinity for lanthanide ions, making them efficient in the recovery and separation of these technologically important metals. In this study, we examine the thermodynamic and structural complexities of lanthanide ion binding to a 41-residue domain, EF 2-3, that constitutes the two highest-affinity metal-binding sites in the lanmodulin protein from Methylorubrum extorquens. Using a combination of circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we characterize the metal binding capabilities of EF 2-3. ITC demonstrates that binding occurs between peptide and lanthanides with conditional dissociation constants (Kd) in the range 20-30 μM, with no significant differences in the Kd values for La3+, Eu3+, and Tb3+ at pH 7.4. In addition, CD spectroscopy suggests that only one binding site of EF 2-3 undergoes a significant conformational change in the presence of lanthanides. 2D IR spectroscopy demonstrates the presence of both mono- and bidentate binding configurations in EF 2-3 with all three lanthanides. MD simulations, supported by Eu3+ luminescence measurements, explore these results, suggesting a competition between water-lanthanide and carboxylate-lanthanide interactions in the EF 2-3 domain. These results underscore the role of the core helical bundle of the protein architecture in influencing binding affinities and communication between the metal-binding sites in the full-length protein.
Collapse
Affiliation(s)
- Eman A Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Wonseok Choi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Qian X, Ma C, Zhang H, Liu K. Bioseparation of rare earth elements and high value-added biomaterials applications. Bioorg Chem 2024; 143:107040. [PMID: 38141331 DOI: 10.1016/j.bioorg.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.
Collapse
Affiliation(s)
- Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China.
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
5
|
Zhang X, Li J, Ma C, Zhang H, Liu K. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Acc Chem Res 2023; 56:2664-2675. [PMID: 37738227 DOI: 10.1021/acs.accounts.3c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein-based biomaterials attract growing interests due to their encoded and programmable robust mechanical properties, superelasticity, plasticity, shape adaptability, excellent interfacial behavior, etc., derived from sequence-guided backbone structures, particularly compared to chemically synthetic counterparts in materials science and biomedical engineering. For example, protein materials have been successfully fabricated as (1) artificial implants (man-made tendons, cartilages, or dental tissues), due to programmable chemistry and biocompatibility; (2) smart biodevices with temperature/light-response and self-healing effects; and (3) impact resistance materials having great mechanical performance due to biomimetics. However, the existing method of regenerating protein materials from natural sources has two critical issues, low yield and structural damage, making it unable to meet demands. Therefore, it is crucial to develop an alternative strategy for fabricating protein materials. Heterologous expression of natural proteins with a modular assembly approach is an effective strategy for material preparation. Standardized, easy-to-assemble protein modules with specific structures and functions are developed through experimental and computational tools based on natural functional protein sequences. Through recombination and heterologous expression, these artificial protein modules become keys to material fabrication. Undergoing an assembly process similar to supramolecular self-assembly of proteins in cells, biomimetic modules can be fabricated for formation of macroscopic materials such as fibers and adhesives. This strategy inspired by synthetic biology and supramolecular chemistry is important for improving target protein yields and assembly integrity. It also preserves and optimizes the mechanical functions of structural proteins, accelerating the design and fabrication of artificial protein materials.In this Account, we overview recent studies on fabricating biomimetic protein materials to elucidate the concept of modular assembly. We discuss the design of biomimetic structural proteins at the molecular level, providing a wealth of details determining the bulk properties of materials. Additinally, we describe the modular self-assembly and assembly driven by inducing molecules, and mechanical properties and applications of resulting fibers. We used these strategies to develop fiber materials with high tensile strength, high toughness, and properties such as anti-icing and high-temperature resistance. We also extended this approach to design protein-based adhesives with ultra-strong adhesion, biocompatibility, and biodegradability for surgical applications such as wound sealing and healing. Other protein materials, including films and hydrogels, have been developed through chemical assembly routes. Finally, we describe exploiting synthetic biology and chemistry to overcome bottlenecks in structural protein modular design, biosynthesis, and material assembly and our perspectives for future development in structural biomaterials.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|