1
|
Kamble SSM, Bodake SM, Marelli UK. Peptide-Triazolobenzodiazepine Hybrids: A Catalyst-Free on-Resin Strategy to Build Complex Therapeutic Motifs Into Peptides. Chemistry 2025:e202500836. [PMID: 40237132 DOI: 10.1002/chem.202500836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
The merger of peptide and heterocyclic chemistry presents significant opportunities for enhancing the structural and functional diversity of therapeutic agents. In this study, we introduce a streamlined on-resin method to modify peptides at the N-terminus amines and the side chain amines of Lys/Orn amino acids by incorporating the biologically active triazolobenzodiazepine scaffold. In the presented solid-phase peptide synthesis (SPPS), the triazolobenzodiazepine core is formed on-resin through a combination of N-alkylation, amide bond formation, and an alkyne-azide 1,3-dipolar cycloaddition, of which the latter two happen as a single-step one-pot reaction- proceeding under mild conditions without metal catalysts. This protocol tolerates a wide variety of amino acids and functional groups, providing a versatile method for synthesizing peptide-triazolobenzodiazepine hybrids. Using orthogonal protection group strategies, we further demonstrate the method's adaptability for two site modifications in peptides involving both the N-terminus and Lys side chain amines. These modifications enhance the scope of "peptide medicinal chemistry" by creating multifunctional peptides with potential therapeutic applications. The method's compatibility with SPPS, room temperature conditions, and elimination of metal catalysis make it an efficient and powerful tool for peptide modification.
Collapse
Affiliation(s)
- Sandip Sushila Mohan Kamble
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Supriya Mahadev Bodake
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Udaya Kiran Marelli
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Li YX, Liu QY, Zhang Y, Liu MM, Liu X, Shen MH, Wang FM, Xu HD. α-( N-Alkyl-N-heteroarenium)-α-diazoacetates: synthesis and reactivity of a novel class of 'onium' diazo compounds. Org Biomol Chem 2024; 22:8109-8113. [PMID: 39291542 DOI: 10.1039/d4ob01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Treatment of alkyl α-(N-heteroaryl)-α-diazoacetates with alkylating reagents affords diazoacetate N-heteroarenium salts. These novel 'onium' diazo compounds are mostly yellow solids, displaying increased thermal and acid stability. Their tetrafluoroborates undergo rhodium catalyzed [2 + 1] and Doyle-Kirmse reactions under mild conditions, suggesting the N-quaternization an effective means of elimination of N-coordination caused catalyst toxicity.
Collapse
Affiliation(s)
- Ya-Xi Li
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Quan-Yun Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yi Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Miao-Miao Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqian Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Fang-Ming Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
3
|
Zhang Z, Liu Q, Chen K, Li X, Li R, Chen X. Hydrogen Bonding-Induced Aggregation of Chiral Functionalized AuNS@Ag NPs for Photothermal Enantioanalysis. Anal Chem 2024; 96:6292-6300. [PMID: 38597814 DOI: 10.1021/acs.analchem.3c05751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Toward the challenges of signaling transduction amplified in enantioselective recognition, we herein devised an innovative strategy for highly selective recognition of amino acids and their derivatives, leveraging photothermal effects. In this approach, bifunctional l-ascorbic acid is employed to reduce silver ions in situ on Au nanostars. Simultaneously, its oxidate (l-dehydroascorbic acid) is bonded to the silver shell as a chiral selector to prepare chiral nanoparticles (C-AuNS@Ag NPs) with the ability to recognize stereoisomers and sensitively modulate the photothermal effect. l-Dehydroascorbic acid can selectively capture one of the enantiomers of the two forms through hydrogen bonding and drive aggregation of the nanoparticles, which sharply enhances the photothermal effect. Consequently, the two forms of the system exhibit a significant temperature difference, which enables the discrimination and quantification of enantiomers. Our strategy verifies that six chiral amino acids and their derivatives can be discriminated with enantioselective response values of up to 79. Additionally, the chiral recognition mechanism was revealed through density functional theory (DFT) calculations, providing a paradigm shift in the development of enantiomeric recognition strategies.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoxing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
4
|
Xuan W, Ma JA. Pinpointing Acidic Residues in Proteins. ChemMedChem 2024; 19:e202300623. [PMID: 38303683 DOI: 10.1002/cmdc.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 02/03/2024]
Abstract
It is of great importance to pinpoint specific residues or sites of a protein in biological contexts to enable desired mechanism of action for small molecules or to precisely control protein function. In this regard, acidic residues including aspartic acid (Asp) and glutamic acid (Glu) hold great potential due to their great prevalence and unique function. To unlock the largely untapped potential, great efforts have been made recently by synthetic chemists, chemical biologists and pharmacologists. Herein, we would like to highlight the remarkable progress and particularly introduce the electrophiles that exhibit reactivity to carboxylic acids, the light-induced reactivities to carboxylic acids and the genetically encoded noncanonical amino acids that allow protein manipulations at acidic residues. We also comment on certain unresolved challenges, hoping to draw more attention to this rapidly developing area.
Collapse
Affiliation(s)
- Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jun-An Ma
- Department of Chemistry, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|