1
|
Wei Y, Feng Y, Wang K, Wei Y, Li Q, Zuo X, Li B, Li J, Wang L, Fan C, Zhu Y. Directing the Encapsulation of Single Cells with DNA Framework Nucleator-Based Hydrogel Growth. Angew Chem Int Ed Engl 2024; 63:e202319907. [PMID: 38391274 DOI: 10.1002/anie.202319907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Encapsulating individual mammalian cells with biomimetic materials holds potential in ex vivo cell culture and engineering. However, current methodologies often present tradeoffs between homogeneity, stability, and cell compatibility. Here, inspired by bacteria that use proteins stably anchored on their outer membranes to nucleate biofilm growth, we develop a single-cell encapsulation strategy by using a DNA framework structure as a nucleator (DFN) to initiate the growth of DNA hydrogels under cell-friendly conditions. We find that among the tested structures, the tetrahedral DFN can evenly and stably reside on cell membranes, effectively initiating hybridization chain reactions which generate homogeneously dense yet flexible single-cell encapsulation for diverse cell lines. The encapsulation persists for up to 72 hours in a serum-containing cell culture environment, representing a ~70-fold improvement compared to encapsulations mediated by single-stranded DNA nucleators. The metabolism and proliferation of the encapsulated cells are suppressed, but can be restored to the original efficiencies upon release, suggesting the superior cell compatibility of the encapsulation. We also find that compared to naked cells, the encapsulated cells exhibit a lower autophagy level after undergoing mechanical stress, suggesting the protective effect of the DNA encapsulation. This method may provide a new tool for ex vivo cell engineering.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yueyue Feng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315300, Ningbo, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jiang Li
- Institute of Materiobiology, College of Science, Shanghai University, 200444, Shanghai, China
| | - Lihua Wang
- Institute of Materiobiology, College of Science, Shanghai University, 200444, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ying Zhu
- Institute of Materiobiology, College of Science, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
2
|
Chen X, Yang Q, Kong W, Ge Y, He J, Yan A, Li D. High spatial-resolved heat manipulating membrane heterogeneity alters cellular migration and signaling. Proc Natl Acad Sci U S A 2023; 120:e2312603120. [PMID: 37983503 PMCID: PMC10691225 DOI: 10.1073/pnas.2312603120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Plasma membrane heterogeneity is a key biophysical regulatory principle of membrane protein dynamics, which further influences downstream signal transduction. Although extensive biophysical and cell biology studies have proven membrane heterogeneity is essential to cell fate, the direct link between membrane heterogeneity regulation to cellular function remains unclear. Heterogeneous structures on plasma membranes, such as lipid rafts, are transiently assembled, thus hard to study via regular techniques. Indeed, it is nearly impossible to perturb membrane heterogeneity without changing plasma membrane compositions. In this study, we developed a high-spatial resolved DNA-origami-based nanoheater system with specific lipid heterogeneity targeting to manipulate the local lipid environmental temperature under near-infrared (NIR) laser illumination. Our results showed that the targeted heating of the local lipid environment influences the membrane thermodynamic properties, which further triggers an integrin-associated cell migration change. Therefore, the nanoheater system was further applied as an optimized therapeutic agent for wound healing. Our strategy provides a powerful tool to dynamically manipulate membrane heterogeneity and has the potential to explore cellular function through changes in plasma membrane biophysical properties.
Collapse
Affiliation(s)
- Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Qianyun Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Wenyan Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| |
Collapse
|