1
|
Tang H, Gao Y, Zhang J, Li Z, Gao Q, Cai P, Chen X, Guo X, van Esch JH, Wang Y, Xuan FZ. Harnessing the Hofmeister Effect for Dynamic Self-Assembly of Supramolecular Hydrogels. Angew Chem Int Ed Engl 2025:e202505417. [PMID: 40264403 DOI: 10.1002/anie.202505417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Dynamic regulation of intermolecular interactions is essential for the creation of dynamic supramolecular materials with lifelike self-regulating functions. Yet specific ion effect, which is known to possess potent effect on intermolecular interactions, has remained unexplored for such a purpose. Here, we demonstrate our access to dynamic self-assembly of supramolecular hydrogels by orchestrating the Hofmeister effect through a simple enzymatic reaction. The involved gelators containing carboxylate moieties self-assemble into hydrogel (Gel1) at acidic pH and dissolve at basic pH. We surprisingly find that the dissolved gelators at basic pH can be driven to self-assemble into hydrogel (Gel2) by kosmotropic ions through the disruption of gelator-water interactions. By coupling to the enzymatic hydrolysis of urea, Gel1 gradually disintegrates over time because of the production of basic NH3. However, interestingly, with the accumulation of kosmotropic ions, NH4 + and CO3 2-, the dissolved gelators are driven to self-assemble into Gel2, realizing a self-regulating gel-sol-gel transition process. The transition rate and stiffness of Gel2 are tunable by adjusting the concentrations of urea or urease. This work may shed light on the creation of lifelike self-regulating supramolecular materials using Hofmeister effect for many enticing applications such as ion-programmed biosensing and drug delivery.
Collapse
Affiliation(s)
- Hongwang Tang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Yuliang Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Jiahao Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Zhongqi Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Qi Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Peiwen Cai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Xinyu Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Jan H van Esch
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Xuhui, District, Shanghai, 200237, P.R. China
| |
Collapse
|
2
|
Gao F, Qiu X, Baddi S, He S, Wang S, Zhao C, Dou X, Feng C. Chiral Nanofibers of Camptothecin Trigger Pyroptosis for Enhanced Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202423446. [PMID: 39803865 DOI: 10.1002/anie.202423446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Camptothecin (CPT), a chemotherapeutic agent, demonstrates significant potential in cancer therapy. However, as a drug, CPT molecule suffers from poor water solubility, limited bioavailability, and insufficient immune response. Herein, we construct CPT nanofibers (CNF) with a right-handed chiral property via supramolecular self-assembly, which significantly overcomes the solubility barriers associated with bioavailability and improves tumor immune prognosis. The CNF exhibits high chiral asymmetry factor (gabs) (~0.11) and remarkable structure stability under pH 6.5 condition. By formulating chiral CNF with mitochondrial-targeted DSPE-PEG-TPP, CNF accumulates specifically in the mitochondria of cancer cells, leading to mitochondrial dysfunction and a 3.42-fold increase in reactive oxygen species (ROS) generation compared to the CPT molecule. This ROS amplification activates the caspase-1/gasdermin D (GSDMD) pathway, inducing pyroptosis that promotes M1 macrophage polarization and enhances CD8+ T-cell-dependent antitumor immunity. Consequently, CNF achieves 1.8-fold greater growth inhibition of distant tumor and reduces tumor metastasis compared to the CPT molecule. Our innovative platform, assembling CPT molecules into chiral CNF structure, is highly anticipated to overcome the current clinical limitations of CPT molecules and offer a new direction for the development of next-generation immunotherapy strategies.
Collapse
Affiliation(s)
- Fengli Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Qiu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuting Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Ruidas P, Dubey SK, Hafiz SA, Mandal J, Mukherjee S, Ghosh NN, Midya R, Roy D, Das D, Singh S, Neogi P, Saha S, Roy UK, Bhattacharyya S, Ghosh A, Bhattacharjee S. Chiral Self-Assembly of a Pyrene-Appended Glutamylalanine Dipeptide and Its Charge Transfer Complex: Fabrication of Magneto-Responsive Hydrogels and Human Cell Imaging. Macromol Rapid Commun 2025; 46:e2400672. [PMID: 39545862 DOI: 10.1002/marc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The formation of a robust, self-healing hydrogel of a novel pyrene-appended dipeptide, Py-E-A (L-Glutamic acid short as E; L-Alanine short as A) is demonstrated. Detailed studies suggest that nanoscopic fibers with a length of several micrometers have formed by chiral self-organization of Py-E-A gelators. Additionally, live human PBMCs imaging is shown using the Py-E-A fluorophore. Interestingly, electron-rich Py-E-A couples with electron-deficient NDI-β-A (β-Alanine short as β-A) by charge transfer (CT) complexation and forms stable deep violet-colored CT super-hydrogel. X-ray diffraction, DFT, and 2D ROESY NMR studies suggest lamellar packing of both Py-E-A and the alternating CT stack in its hydrogel matrixes. Supramolecular chirality of the Py-E-A donor can be altered by adding an achiral acceptor NDI-β-A. Notably, the fibers of the CT hydrogel are found to be even thinner than the Py-E-A fibers, which, in turn, makes the CT hydrogel more tolerant to the applied strain. Further, the self-healing and injectable properties of the hydrogels are shown. Finally, the magneto-responsive behavior of the Py-E-A and CT hydrogels loaded with spin-canted Cu-ferrite (Cu0.6Zn0.4Fe2O4) nanoparticles (NPs) is demonstrated. The presence of magnetic NPs within the hydrogels has changed the fibrous morphology to rod-like nanoclusters.
Collapse
Affiliation(s)
- Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Soumen Kumar Dubey
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Jishu Mandal
- CIF Biophysical Laboratory, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sunil Mukherjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | | | - Ramkrishna Midya
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Dipanwita Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Dona Das
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, West Bengal, 723104, India
| | - Somendra Singh
- Indian Institute of Technology, Delhi, Sonipat Campus, Sonipat, Haryana, 131021, India
| | - Poonam Neogi
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Sudipta Saha
- Department of Chemistry, Trivenidevi Bhalotia College, Raniganj, West Bengal, 713347, India
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Sankar Bhattacharyya
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, West Bengal, 723104, India
| | - Angshuman Ghosh
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
4
|
Yan J, Ren L, Lu X, Li W, Zhang A. Supramolecular Chiral Assembly of Dendritic Amphiphiles in Aqueous Media. Chemistry 2025; 31:e202403450. [PMID: 39601355 DOI: 10.1002/chem.202403450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Dendritic amphiphiles are a promising class of topological blocks for self-assembly to construct chiral supramolecular aggregates in aqueous media. Their unique dendritic geometry, structure variability and multivalence can mediate the assemblies with versatile morphologies and functions. The bulky dendritic moieties also enable the appropriate association-repulsion balance to control supramolecular growth, and simultaneously shield the assemblies with enhanced stabilities. Moreover, the crowded packing of dendritic segments facilitates the efficient chirality transfer from molecular level to supramolecular level, to achieve chirality amplification or enhancement. Dendritic moieties also provide chances to stabilize the assemblies in aqueous media through shielding and cooperative effects. The dendritic assemblies can be intriguingly made responsive to external stimuli including temperature, light, solvents or guests to switch their nanostructures or supramolecular chirality. Various dendritic amphiphiles bearing peptide or aromatic motifs have been reported in supramolecular chiral assembly, and their functional applications investigated. This review summarizes the significant progresses with a particular focus on the dendritic structural effects on supramolecular chiral assembly and the stimuli-responsiveness in aqueous media.
Collapse
Affiliation(s)
- Jiatao Yan
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| |
Collapse
|
5
|
Xiao W, Sun S, Geng R, Bi D, Liu Y, Zhu J. A General "Two-Lock" Strategy to Enhance Drug Loading and Lysosomal Escape in Intelligent Boronate Ester Polymer Nanoparticles for Improved Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68890-68904. [PMID: 39641664 DOI: 10.1021/acsami.4c15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Boronate ester can be used to prepare intelligent polymer nanoparticles (NPs). However, the traditional boronate ester polymer NPs made of boronic acid and diols using a "single-lock" strategy (B-O NPs) exhibit low drug loading capacity (DLC) and insufficient lysosomal escape ability, resulting in limited antitumor efficacy. We develop a "two-lock" strategy that combines dodecanamine and boronic acid using boron-nitrogen (B ← N) coordination to enhance the formation of a boronate ester polymer. Through this strategy, amphiphilic dextran and poly(vinyl alcohol) are synthesized through conjugation with the phenylboronic acid (PBA)/dodecanamine complex. The amphiphilic dextran encapsulates paclitaxel (PTX) to form B-N-O NPs with a higher DLC than their "single-lock" compartments due to enhanced boronate ester stability and improved hydrophobic drug-polymer interactions. Moreover, the B-N-O NPs release more PTX under acidic conditions compared with the B-O NPs. To demonstrate the generality of this "two-lock" strategy, eight polymer prodrug B-N-O NPs employing poly(vinyl alcohol) or dextran, along with PBA-modified gemcitabine, fluorouracil, and 7-ethyl-10-hydroxycamptothecin, or boronic acid-containing bortezomib and dodecanamine, are prepared, showing overall enhanced DLC and higher responsive drug release efficiency compared to B-O NPs. Importantly, B-N-O NPs with a combination of dodecanamine and boronic acid show a better lysosomal escape capability than B-O NPs. Moreover, B-N-O NPs exhibit stronger cytotoxicity compared to B-O NPs and free drugs in vitro. Their enhanced drug loading, responsive drug release, and lysosomal escape abilities contribute to enhanced antitumor efficacy in vivo. This "two-lock" strategy can be a general and convenient method to prepare responsive polymer NPs with enhanced anticancer efficacy.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology; Cancer Clinical Study Center of Hubei Province; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Yu S, Webber MJ. Engineering disease analyte response in peptide self-assembly. J Mater Chem B 2024; 12:10757-10769. [PMID: 39382032 DOI: 10.1039/d4tb01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A need to enhance the precision and specificity of therapeutic nanocarriers inspires the development of advanced nanomaterials capable of sensing and responding to disease-related cues. Self-assembled peptides offer a promising nanocarrier platform with versatile use to create precisely defined nanoscale materials. Disease-relevant cues can range from large biomolecules, such as enzymes, to ubiquitous small molecules with varying concentrations in healthy versus diseased states. Notably, pH changes (i.e., H+ concentration), redox species (e.g., H2O2), and glucose levels are significant spatial and/or temporal indicators of therapeutic need. Self-assembled peptides respond to these cues by altering their solubility, modulating electrostatic interactions, or facilitating chemical transformations through dynamic or labile bonds. This review explores the design and construction of therapeutic nanocarriers using self-assembled peptides, focusing on how peptide sequence engineering along with the inclusion of non-peptidic components can link the assembly state of these nanocarriers to the presence of disease-relevant small molecules.
Collapse
Affiliation(s)
- Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Tang Z, Lan W, Wen K, Li W, Wang T, Zhou D, Su H. Spontaneous assembly of a class of small molecule prodrugs directed by SN38. J Mater Chem B 2024; 12:9921-9929. [PMID: 39252501 DOI: 10.1039/d4tb01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Small molecule self-assembling prodrugs (SAPDs) are an emerging class of amphiphilic monomers that can aggregate into supramolecular nanostructures with high drug loading identical to that of the individual prodrug. Despite great progress in creating nanodrugs via nanoprecipitation, the direct self-assembly of small molecule SAPDs in aqueous solution remains challenging, as the proper hydrophilic-hydrophobic balance and intermolecular interactions have to be rationally considered. We report a class of small molecule SAPDs by conjugating the anticancer drug SN38 as the structure-directing component with various hydrophilic auxiliaries (i.e., oligo ethylene glycol (OEG) of different lengths, amino, and carboxyl groups) via a self-immolative disulfanyl-ethyl carbonate linker. Driven by π-π interactions between SN38 units, these SAPDs spontaneously assembled into well-defined fibrous nanostructures. Variations in hydrophilic domains can robustly regulate the hydrophobicity of SAPDs, as well as the morphologies and surface features of supramolecular filaments, subsequently influencing cellular internalization behaviors. Furthermore, our study also reveals that the parent drug can be efficiently and controllably released in the presence of glutathione (GSH), exhibiting high in vitro toxicity against colorectal cancer cells. In this work, we present a delicate platform to design small molecule SAPDs that can spontaneously self-assemble into supramolecular filamentous assemblies directed by aromatic interaction of the parent drugs, providing a new strategy to optimize supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Zhenhai Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenning Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaiying Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Tao Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Mohanta I, Sahu N, Guchhait C, Kaur L, Mandal D, Adhikari B. Ag +-Induced Supramolecular Polymers of Folic Acid: Reinforced by External Kosmotropic Anions Exhibiting Salting Out. Biomacromolecules 2024; 25:6203-6215. [PMID: 39153217 DOI: 10.1021/acs.biomac.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Introducing kosmotropic salts enhances protein stability and reduces solubility by withdrawing water from the protein surface, leading to 'salting out', a phenomenon we have mimicked in supramolecular polymers (SPs). Under the guidance of Ag+, folic acid (FA) self-assembled in water through slipped-stacking and hydrophobic interactions into elongated, robust one-dimensional SPs, resulting in thermo-stable supergels. The SPs exhibited temperature and dilution tolerance, attributed to the stability of the FA-Ag+ complex and its hydrophobic stacking. Importantly, FA-Ag+ SP's stability has been augmented by the kosmotropic anions, such as SO42-, strengthening hydrophobic interactions in the SP, evident from the enhanced J-band, causing improvement of gel's mechanical property. Interestingly, higher kosmotrope concentrations caused a significant decrease in SP's solubility, leading to precipitation of the reinforced SPs─a 'salting out' effect. Conversely, chaotropes like ClO4- slightly destabilized hydrophobic stacking and promoted an extended conformation of individual SP chain with enhanced solubility, resembling a 'salting in' effect.
Collapse
Affiliation(s)
- Indrajit Mohanta
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Chandrakanta Guchhait
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| |
Collapse
|
9
|
Jing X, Zhu Z, Wang S, Xin J, Zhou H, Wang L, Tong H, Cui C, Zhang Y, Sun F, Yang L, Gao Y, Lu H. Nonionic Water-Soluble Oligo(ethylene glycol)-Modified Polypeptides with a β-Sheet Conformation. Biomacromolecules 2024; 25:5343-5351. [PMID: 39001815 DOI: 10.1021/acs.biomac.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The secondary structures of polypeptides, such as an α-helix and a β-sheet, often impart specific properties and functions, making the regulation of their secondary structures of great significance. Particularly, water-soluble polypeptides bearing a β-sheet conformation are rare and challenging to achieve. Here, a series of oligo(ethylene glycol)-modified lysine N-carboxylic anhydrides (EGmK-NCA, where m = 1-3) and the corresponding polymers EGmKn are synthesized, with urethane bonds as the linker between the side-chain EG and lysine. The secondary structure of EGmKn is delicately regulated by both m and n, the length (number of repeating units) of EG and the degree of polymerization (DP), respectively. Among them, EG2Kn adopts a β-sheet conformation with good water solubility at an appropriate DP and forms physically cross-linked hydrogels at a concentration as low as 1 wt %. The secondary structures of EG1Kn can be tuned by DP, exhibiting either a β-sheet or an α-helix, whereas EG3Kn appears to a adopt pure and stable α-helix with no dependence on DP. Compared to previous works reporting EG-modified lysine-derived polypeptides bearing exclusively an α-helix conformation, this work highlights the important and unexpected role of the urethane connecting unit and provides useful case studies for understanding the secondary structure of polypeptides.
Collapse
Affiliation(s)
- Xiaodong Jing
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Zhu
- Changping Laboratory, Beijing 102200, China
| | - Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Xin
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haisen Zhou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Letian Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huimin Tong
- Department of Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenhui Cui
- Department of Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (Xi'an Jiaotong University), Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yiqin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102200, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Sis MJ, Liu D, Allen I, Webber MJ. Iterative Design Reveals Molecular Domain Relationships in Supramolecular Peptide-Drug Conjugates. Biomacromolecules 2024; 25:4482-4491. [PMID: 38870408 DOI: 10.1021/acs.biomac.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Supramolecular peptide-drug conjugates (sPDCs) are prepared by covalent attachment of a drug moiety to a peptide motif programmed for one-dimensional self-assembly, with subsequent physical entanglement of these fibrillar structures enabling formation of nanofibrous hydrogels. This class of prodrug materials presents an attractive platform for mass-efficient and site-specific delivery of therapeutic agents using a discrete, single-component molecular design. However, a continued challenge in sPDC development is elucidating relationships between supramolecular interactions in their drug and peptide domains and the resultant impacts of these domains on assembly outcomes and material properties. Inclusion of a saturated alkyl segment alongside the prodrug in the hydrophobic domain of sPDCs could relieve some of the necessity for ordered, prodrug-produg interactions. Accordingly, nine sPDCs are prepared here to iterate the design variables of amino acid sequence and hydrophobic prodrug-alkyl block design. All molecules spontaneously formed hydrogels under physiological conditions, indicating a less hindered thermodynamic path to self-assembly relative to previous prodrug-only designs. However, material studies on the supramolecular arrangement, formation, and mechanical properties of the resultant sPDC hydrogels as well as their drug release profiles showed complex relationships between the hydrophobic and peptide domains in the formation and function of the resulting assemblies. Together, these results indicate that sPDC material properties are intrinsically linked to holistic molecular design with coupled contributions from their prodrug and peptide domains in directing properties of the emergent materials.
Collapse
Affiliation(s)
- Matthew J Sis
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Isabella Allen
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Tang Z, Zhang J, Li W, Wen K, Gu Z, Zhou D, Su H. Supramolecular assembly of isomeric SN-38 prodrugs regulated by conjugation sites. J Mater Chem B 2024; 12:6146-6154. [PMID: 38842181 DOI: 10.1039/d4tb00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Supramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38. Self-assembling prodrug (SAPD) isomers 10-OEG-SN38 and 20-OEG-SN38 can self-assemble into giant nanotubes and filamentous assemblies, respectively, via aromatic associations that dominate self-assembly. Our study reveales the influence of modification sites on the assembly behavior and ability of the SN38 SAPDs, as well as drug release and subsequent in vitro and in vivo antitumor effects. The SAPD modified at position 20 exhibits stronger π-π interactions among SN38 units, leading to more compact packing and enhanced assembly capability, whereas OEG at position 10 poses steric hindrance for aromatic associations. Importantly, owing to its higher chemical and supramolecular stability, 20-OEG-SN38 outperforms 10-OEG-SN38 and irinotecan, a clinically used prodrug of SN38, in a CT26 tumor model, demonstrating enhanced tumor growth inhibition and prolonged animal survival. This study presents a new strategy of using interactions among drug molecules as dominating features to create supramolecular assemblies. It also brings some insights into creating effective supramolecular drug assemblies via the engineering of self-assembling building blocks, which could contribute to the optimization of design principles for supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Zhenhai Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaiying Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Mo X, Song J, Liu X, Guo RC, Hu B, Yu Z. Redox-Regulated In Situ Seed-Induced Assembly of Peptides. Biomacromolecules 2024; 25:2497-2508. [PMID: 38478850 DOI: 10.1021/acs.biomac.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Morphology-transformational self-assembly of peptides allows for manipulation of the performance of nanostructures and thereby advancing the development of biomaterials. Acceleration of the morphological transformation process under a biological microenvironment is important to efficiently implement the tailored functions in living systems. Herein, we report redox-regulated in situ seed-induced assembly of peptides via design of two co-assembled bola-amphiphiles serving as a redox-resistant seed and a redox-responsive assembly monomer, respectively. Both of the peptides are able to independently assemble into nanoribbons, while the seed monomer exhibits stronger assembling propensity. The redox-responsive monomer undergoes morphological transformation from well-defined nanoribbons to nanoparticles. Kinetics studies validate the role of the assembled inert monomer as the seeds in accelerating the assembly of the redox-responsive monomer. Alternative addition of oxidants and reductants into the co-assembled monomers promotes the redox-regulated assembly of the peptides facilitated by the in situ-formed seeds. The reduction-induced assembly of the peptide could also be accelerated by in situ-formed seeds in cancer cells with a high level of reductants. Our findings demonstrate that through precisely manipulating the assembling propensity of co-assembled monomers, the in situ seed-induced assembly of peptides could be achieved. Combining the rapid assembly kinetics of the seed-induced assembly with the common presence of redox agents in a biological microenvironment, this strategy potentially offers a new method for developing biomedical materials in living systems.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
13
|
Qiao Y, Wu G, Liu Z, He H, Tan W, Xu B. Assessment of the Enzymatic Dephosphorylation Kinetics in the Assemblies of a Phosphopentapeptide that Forms Intranuclear Nanoribbons. Biomacromolecules 2024; 25:1310-1318. [PMID: 38265878 PMCID: PMC11071069 DOI: 10.1021/acs.biomac.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Although the formation of peptide assemblies catalyzed by alkaline phosphatase (ALP) has received increasing attention in inhibiting cancer cells, the detailed enzyme kinetics of the dephosphorylation of the corresponding phosphopeptide assemblies have yet to be determined. We recently discovered that assemblies from a phosphopentapeptide can form intracellular nanoribbons that kill induced pluripotent stem cells or osteosarcoma cells, but the kinetics of enzymatic dephosphorylation remain unknown. Thus, we chose to examine the enzyme kinetics of the dephosphorylation of the phosphopentapeptide [NBD-LLLLpY (1)] from concentrations below to above its critical micelle concentration (CMC). Our results show that the phosphopeptide exhibits a CMC of 75 μM in phosphate saline buffer, and the apparent Vmax and Km values of alkaline phosphatase catalyzed dephosphorylation are approximately 0.24 μM/s and 5.67 mM, respectively. Despite dephosphorylation remaining incomplete at 60 min in all the concentrations tested, dephosphorylation of the phosphopeptide at concentrations of 200 μM or above mainly results in nanoribbons, dephosphorylation at concentrations of CMC largely produces nanofibers, and dephosphorylation below the CMC largely generates nanoparticles. Moreover, the formation of nanoribbons correlates with the intranuclear accumulation of the pentapeptide. By providing the first examination of the enzymatic kinetics of phosphopeptide assemblies, this work further supports the notion that the assemblies of phosphopentapeptides can act as a new functional entity for controlling cell fates.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Grace Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|