1
|
Rzayev J, Jubault P, Besset T. Copper-Catalyzed Regioselective Meta C─H Bond Olefination of Anilides. Chemistry 2025:e202500992. [PMID: 40242930 DOI: 10.1002/chem.202500992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/18/2025]
Abstract
Herein, we report a Cu-catalyzed meta-olefination of anilides using alkenyl iodonium salts. The olefination of a panel of pivanilides was achieved using an additive-free copper-based catalytic system under mild reaction conditions (25 examples, up to 60% yield). By favoring a Heck-like four-membered transition state, the approach demonstrated an excellent regioselectivity for the meta C─H functionalization with β-styrenyl and β-alkyl-alkenyl groups using a weakly coordinated directing group (DG). Postfunctionalization reactions were conducted, highlighting both the synthetic interest of the products and the potential atom-efficiency of the process.
Collapse
Affiliation(s)
- Javid Rzayev
- INSA Rouen Normandie, Univ Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN (UMR 6064), Rouen, F-76000, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN (UMR 6064), Rouen, F-76000, France
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN (UMR 6064), Rouen, F-76000, France
| |
Collapse
|
2
|
Li ZR, Zhan K, Wang YJ, Wu LL, Lu GL, Wang HY, Wan XL, Xu ZJ, Low KH, Che CM. Iridium porphyrin-catalysed asymmetric carbene insertion into primary N-adjacent C-H bonds with TON over 1000000. Nat Commun 2025; 16:3311. [PMID: 40195328 PMCID: PMC11976952 DOI: 10.1038/s41467-025-58316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
Selective functionalization of ubiquitous C-H bonds in organic molecules provides a straightforward and efficient approach to construct complex molecules with fewer synthetic steps and high atom economy, thus promoting more sustainable and economical chemical synthesis. A formidable challenge in the field is to increase the turnover numbers (TONs) for catalytic C-H functionalization reactions reported in the literature (generally <10,000) to reasonably high levels to reduce the cost of the reaction. Another challenge is the selective functionalization of less reactive primary C(sp3)-H bonds compared to other types of more reactive C-H bonds. We now demonstrate an efficient iridium porphyrin-catalysed asymmetric carbene insertion into primary N-adjacent C(sp3)-H bond of N-methyl indoline and N-methyl aniline derivatives. Using chiral iridium porphyrin as a catalyst, chiral β-amino acid derivatives have been obtained with very high yields and excellent ee values (up to 99%), and TONs as high as 84,000 to 1,380,000. The reaction can be readily performed on a 100 g scale while retaining its high efficiency and selectivity. We also show that this iridium catalysis can efficiently access oligomers and polymers of β-amino acid derivatives via stepwise C-H insertion, demonstrating its potential applications in materials science via C-H bond functionalization reactions.
Collapse
Affiliation(s)
- Zong-Rui Li
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China
| | - Kun Zhan
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yi-Jie Wang
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China
| | - Liang-Liang Wu
- Laboratory of Beam Technology and Energy Materials, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, PR China
| | - Guo-Lin Lu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China
| | - Hao-Yang Wang
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China
| | - Xiao-Long Wan
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China
| | - Zhen-Jiang Xu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China.
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi-Ming Che
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, PR China.
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
3
|
Khandelia T, Panigrahi P, Ghosh S, Mandal R, Doley B, Patel BK. Solvent Dictated Organic Transformations. Chem Asian J 2024; 19:e202400603. [PMID: 39509646 DOI: 10.1002/asia.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Indexed: 11/15/2024]
Abstract
Solvent plays an important role in many chemical reactions. The C-H activation has been one of the most powerful tools in organic synthesis. These reactions are often assisted by solvents which not only provide a medium for the chemical reactions but also facilitate reaching to the product stage. The solvent helps the reaction profile both chemically and energetically to reach the targeted product. Organic transformations via C-H activation from the solvent assistance perspective has been discussed in this review. Various solvents such as tetrahydrofuran (THF), MeCN, dichloromethane (DCM), dimethoxyethane (DME), 1,2-dichloroethane (1,2-DCE), dimethylformamide (DMF), dimethylsulfoxide (DMSO), isopropyl nitrile (iPrCN), 1,4-dioxane, AcOH, trifluoroacetic acid (TFA), Ac2O, PhCF3, chloroform (CHCl3), H2O, N-methylpyrrolidone (NMP), acetone, methyl tert-butyl ether (MTBE), toluene, p-xylene, alcohols, MeOH, 1,1,1-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), tert-amyl alcohol and their roles are discussed. The exclusive role of the solvent in various transformations has been deliberated by highlighting the substrate scope, along with the proposed mechanisms. For easy classification, the review has been divided into three parts: (i) solvent-switched divergent C-H activation; (ii) C-H bond activation with solvent as the coupling reagent, and (iii) C-H activation with solvent caging and solvent-assisted electron donor acceptor (EDA) complex formation and autocatalysis.
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Barlina Doley
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
4
|
Hou T, Wang X, Wu D, Yang X, Li G, Xu H, Dong Y. Rhodium-Catalyzed C-H Arylation of Indoles with Arylsilanes at Room Temperature. J Org Chem 2024; 89:16406-16418. [PMID: 39504433 DOI: 10.1021/acs.joc.4c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The Cp*Rh-catalyzed C-H arylation of indoles with arylsilanes is developed. This C-H activation transformation allows for the Rh-catalyzed indole C2 arylation to overcome the limitations of requiring strong directing group assistance and high-temperature conditions, achieving a room-temperature transformation driven by a weak directing group. Cp*Rh/MeOH catalytic media are considered a key factor enabling this transformation to occur under mild conditions, and experimental studies and theoretical calculations were performed to rationalize the reaction mechanisms and the influence of methanol as a solvent in promoting the reaction.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Guang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
5
|
Cattani S, Pandit NK, Buccio M, Balestri D, Ackermann L, Cera G. Iron-Catalyzed C-H Alkylation/Ring Opening with Vinylbenzofurans Enabled by Triazoles. Angew Chem Int Ed Engl 2024; 63:e202404319. [PMID: 38785101 DOI: 10.1002/anie.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unprecedented iron-catalyzed C-H annulation using readily available 2-vinylbenzofurans as the reaction pattern. The redox-neutral strategy, based on cheap, non-toxic, and earth-abundant iron catalysts, exploits triazole assistance to promote a cascade C-H alkylation, benzofuran ring-opening and insertion into a Fe-N bond, to form highly functionalized isoquinolones. Detailed mechanistic studies supported by DFT calculations fully disclosed the manifold of the iron catalysis.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Neeraj Kumar Pandit
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Michele Buccio
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| |
Collapse
|
6
|
Di Matteo M, Gagliardi A, Pradal A, Veiros LF, Gallou F, Poli G. Pd-Catalyzed C(sp 2)-H/C(sp 2)-H Coupling of Limonene. J Org Chem 2024; 89:10451-10461. [PMID: 39025478 DOI: 10.1021/acs.joc.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Limonene undergoes a regioselective Pd(II)-catalyzed C(sp2)-H/C(sp2)-H coupling with acrylic acid esters and amides, α,β-unsaturated ketones, styrenes, and allyl acetate, affording novel 1,3-dienes. DFT computations gave results in accord with the experimental results and allowed for the formulation of a plausible mechanism. The postfunctionalization of one of the coupled products was achieved via a large-scale Sonogashira reaction conducted under micellar catalysis.
Collapse
Affiliation(s)
- Marco Di Matteo
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Anna Gagliardi
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Alexandre Pradal
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | | | - Giovanni Poli
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Zachmann AKZ, Drappeau JA, Liu S, Alexanian EJ. C(sp 3)-H (N-Phenyltetrazole)thiolation as an Enabling Tool for Molecular Diversification. Angew Chem Int Ed Engl 2024; 63:e202404879. [PMID: 38657161 PMCID: PMC11795534 DOI: 10.1002/anie.202404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Methods enabling the broad diversification of C(sp3)-H bonds from a common intermediate are especially valuable in chemical synthesis. Herein, we report a site-selective (N-phenyltetrazole)thiolation of aliphatic and (hetero)benzylic C(sp3)-H bonds using a commercially available disulfide to access N-phenyltetrazole thioethers. The thioether products are readily elaborated in diverse fragment couplings for C-C, C-O, or C-N construction. The C-H functionalization proceeds via a radical-chain pathway involving hydrogen atom transfer by the electron-poor N-phenyltetrazolethiyl radical. Hexafluoroisopropanol was found to be essential to reactions involving aliphatic C(sp3)-H thiolation, with computational analysis consistent with dual hydrogen bonding of the N-phenyltetrazolethiyl radical imparting increased radical electrophilicity to facilitate the hydrogen atom transfer. Substrate is limiting reagent in all cases, and the reaction displays an exceptional functional group tolerance well suited to applications in late-stage diversification.
Collapse
Affiliation(s)
- Ashley K. Z. Zachmann
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Justine A. Drappeau
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Shubin Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA); Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| |
Collapse
|
8
|
Olu-Igbiloba OA, Sitzmann H, Manolikakes G. Merging Cobalt-Catalyzed C-H Activation with the Mannich Reaction: A Modular Approach to α-Substituted N-Sulfonyl Amines. J Org Chem 2024; 89:6903-6914. [PMID: 38698761 DOI: 10.1021/acs.joc.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A three-component synthesis of α-substituted N-sulfonyl amines from aryl aldehydes, primary sulfonamides, and (hetero)arenes is described. This transformation enables a straightforward and modular synthesis of highly substituted sulfonamide scaffolds in good yields. The direct functionalization of C(sp2)-H bonds via cobalt-catalyzed C-H-activation offers an appealing and atom-economical alternative to classical methods for the synthesis of α-arylated amines such as the Petasis or Mannich-type reactions.
Collapse
Affiliation(s)
| | - Helmut Sitzmann
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| |
Collapse
|
9
|
Xu Y, Li H, Meng X, Yang J, Xue Y, Teng C, Lv W, Wang Z, Li X, Sun T, Meng S, Zong C. Unfolding Protein-Based Hapten Coupling via Thiol-Maleimide Click Chemistry: Enhanced Immunogenicity in Anti-Nicotine Vaccines Based on a Novel Conjugation Method and MPL/QS-21 Adjuvants. Polymers (Basel) 2024; 16:931. [PMID: 38611189 PMCID: PMC11013800 DOI: 10.3390/polym16070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Vaccines typically work by eliciting an immune response against larger antigens like polysaccharides or proteins. Small molecules like nicotine, on their own, usually cannot elicit a strong immune response. To overcome this, anti-nicotine vaccines often conjugate nicotine molecules to a carrier protein by carbodiimide crosslinking chemistry to make them polymeric and more immunogenic. The reaction is sensitive to conditions such as pH, temperature, and the concentration of reactants. Scaling up the reaction from laboratory to industrial scales while maintaining consistency and yield can be challenging. Despite various approaches, no licensed anti-nicotine vaccine has been approved so far due to the susboptimal antibody titers. Here, we report a novel approach to conjugate maleimide-modified nicotine hapten with a disulfide bond-reduced carrier protein in an organic solvent. It has two advantages compared with other approaches: (1) The protein was unfolded to make the peptide conformation more flexible and expose more conjugation sites; (2) thiol-maleimide "click" chemistry was utilized to conjugate the disulfide bond-reduced protein and maleimide-modified nicotine due to its availability, fast kinetics, and bio-orthogonality. Various nicotine conjugate vaccines were prepared via this strategy, and their immunology effects were investigated by using MPL and QS-21 as adjuvants. The in vivo study in mice showed that the nicotine-BSA conjugate vaccines induced high anti-nicotine IgG antibody titers, compared with vaccines prepared by using traditional condensation methods, indicating the success of the current strategy for further anti-nicotine or other small-molecule vaccine studies. The enhancement was more significant by using MPL and QS-21 than that of traditional aluminum adjuvants.
Collapse
Affiliation(s)
- Ying Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Huiting Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
- School of Biotechnology, Jiangnan University, Wuxi 214126, China
| | - Xiongyan Meng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Jing Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Yannan Xue
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Changcai Teng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Wenxin Lv
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Zhen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Tiantian Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Shuai Meng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Chengli Zong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| |
Collapse
|
10
|
Zhu Q, Long J, Song X, Wang K, Zeng J, Fan Y. KO tBu/DMF-Mediated Hydroalkylation of Alkenes via Benzylic C-H Bond Activation. J Org Chem 2024; 89:3726-3731. [PMID: 38417109 DOI: 10.1021/acs.joc.3c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Catalytic hydroalkylation reaction of alkenes with benzylic hydrocarbons involving t-BuOK/DMF-mediated benzylic C-H bond activation is demonstrated. This direct and operational simple protocol affords a rapid and reliable access to a wide scope of benzylic compounds in good-to-excellent yields. The benzylic C-H's of either activated diarylmethanes (pKa ∼ 32.2) and benzyl thioethers (pKa ∼ 30.8) or inert alkylbenzenes could all act as useful synthetic platforms to be conveniently alkylated under mild reaction conditions.
Collapse
Affiliation(s)
- Qiming Zhu
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jiajia Long
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Xianchen Song
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Kaifang Wang
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jingkai Zeng
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Yuyuan Fan
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| |
Collapse
|
11
|
Jia X, Xing D, Shen J, Li B, Zeng Y, Jiang H, Huang L. 1,2,3-Thiadiazole as a Modifiable and Scalable Directing Group for ortho-C-H Functionalization. Org Lett 2024; 26:1544-1549. [PMID: 38358975 DOI: 10.1021/acs.orglett.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In the last few decades, directed C-H bond functionalization has had enormous applicability in academia and industry. The development of a novel, readily accessible, and scalable directing group with modifiable ability is highly desirable in C-H functionalization. Herein, we report the 1,2,3-thiadiazole as a modifiable directing group for C-H amidation and alkynylation with dioxazolones, p-toluenesulfonyl azide, and bromoalkynes in high yield. The densely functionalized 1,2,3-thiadiazole products are modified into thioamide, multisubstituted furan, γ-thiapyrone, thiazole, and various alkynyl sulfides through simple and one-step reactions. The competition experiments reveal that the directing ability of 1,2,3-thiadiazole is slightly weaker than pyridine and bidentate amide but stronger than the widely used carboxylate.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Donghui Xing
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiayi Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bo Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yue Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
12
|
Liu J, Liu DY, Yang Q, Zeng YF, Wang XL, Wang PF, Ruan YJ, Wen MM, Zhang SS, Du LD, Liu XG. Cp*Rh(III)-catalyzed regioselective cyclization of aromatic amides with allenes. Chem Commun (Camb) 2024; 60:598-601. [PMID: 38099839 DOI: 10.1039/d3cc05342c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A new Cp*Rh(III)-catalyzed regioselective cyclization reaction of aromatic amides with allenes is reported. The use of allenyl derivatives bearing a directing-group assistant as a reaction promoter was the key to the success of this protocol. In this catalytic system, N-(pivaloyloxy)benzamide substrates react with allenes via Rh-σ-alkenyl intermediates, while N-(pivaloyloxy) indol substrates react via Rh-π-allyl intermediates. These reactions were characterized by mild reaction conditions, a broad substrate scope, and high functional-group compatibility to yield several high-value isoquinolinone and pyrimido[1,6-a]indol-1(2H)-one skeleton-containing compounds. The synthetic applications and primary mechanisms were also investigated.
Collapse
Affiliation(s)
- Jing Liu
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Deng-Yin Liu
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Qian Yang
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421000, P. R. China.
| | - Xiao-Li Wang
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Peng-Fei Wang
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Yu-Jun Ruan
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Miao-Miao Wen
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Li-da Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao 266071, China.
| | - Xu-Ge Liu
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
13
|
Bodé NE, Stradiotto M. DalPhos/Nickel-Catalyzed C2-H Arylation of 1,3-Azoles Using a Dual-Base System. Org Lett 2023. [PMID: 38039305 DOI: 10.1021/acs.orglett.3c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
We report a versatile method for C2 functionalization of (benz)oxazoles and (benzo)thiazoles employing a tert-butylimino-tri(pyrrolidino)phosphorane/sodium trifluoroacetate (BTPP/NaTFA) "dual-base" system in combination with an air-stable Ni(II) precatalyst containing either CyPAd-DalPhos or PhPAd-DalPhos. These catalyst systems enable access to a reaction scope that encompasses a range of challenging oxidative addition partners, including (hetero)aryl chlorides as well as pivalates, tosylates, and other related phenol derivatives. The utility of this method is demonstrated through the derivatization of an active pharmaceutical ingredient and 5 mmol synthesis of a thiazole derivative.
Collapse
Affiliation(s)
- Nicholas E Bodé
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|