1
|
Betinol IO, Kuang Y, Mulley BP, Reid JP. Controlling Stereoselectivity with Noncovalent Interactions in Chiral Phosphoric Acid Organocatalysis. Chem Rev 2025; 125:4184-4286. [PMID: 40101184 DOI: 10.1021/acs.chemrev.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chiral phosphoric acids (CPAs) have emerged as highly effective Brønsted acid catalysts in an expanding range of asymmetric transformations, often through novel multifunctional substrate activation modes. Versatile and broadly appealing, these catalysts benefit from modular and tunable structures, and compatibility with additives. Given the unique types of noncovalent interactions (NCIs) that can be established between CPAs and various reactants─such as hydrogen bonding, aromatic interactions, and van der Waals forces─it is unsurprising that these catalyst systems have become a promising approach for accessing diverse chiral product outcomes. This review aims to provide an in-depth exploration of the mechanisms by which CPAs impart stereoselectivity, positioning NCIs as the central feature that connects a broad spectrum of catalytic reactions. Spanning literature from 2004 to 2024, it covers nucleophilic additions, radical transformations, and atroposelective bond formations, highlighting the applicability of CPA organocatalysis. Special emphasis is placed on the structural and mechanistic features that govern CPA-substrate interactions, as well as the tools and techniques developed to enhance our understanding of their catalytic behavior. In addition to emphasizing mechanistic details and stereocontrolling elements in individual reactions, we have carefully structured this review to provide a natural progression from these specifics to a broader, class-level perspective. Overall, these findings underscore the critical role of NCIs in CPA catalysis and their significant contributions to advancing asymmetric synthesis.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian P Mulley
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Du YY, He YS, Liang Y, Liu XS, Liu J, Gai LH, Liu SZ, Cao YM. Chiral Phosphoric Acid-Catalyzed Hydrolytic Parallel Kinetic Resolution of Racemic Epoxides and Activated Alcohols. Org Lett 2025; 27:1786-1791. [PMID: 39963980 DOI: 10.1021/acs.orglett.4c04603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We report a chiral phosphoric acid-catalyzed hydrolytic parallel kinetic resolution (HPKR) of racemic epoxides and activated alcohols. Using an acyloxy-assisted activation strategy, this method enables the highly stereocontrolled hydrolysis under mild conditions. A wide range of aryl-substituted epoxides and activated secondary alcohols were effectively transformed, providing corresponding chiral alcohols with combined yields of up to 99% and enantiomeric ratios exceeding 99:1.
Collapse
Affiliation(s)
- Yi-Ying Du
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yu-Shi He
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yan Liang
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xue-Song Liu
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Juan Liu
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Long-Hui Gai
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shang-Zhong Liu
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi-Ming Cao
- College of Science, and Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Zhu B, Yuan W, Tu T, Dai G, Zhou L, Ren S, Yang X. Access to Chiral Bridged Biaryls via Brønsted Acid-Catalyzed Asymmetric Addition of Alcohols to Fluoroalkylated Biaryl Oxazepines. Org Lett 2025; 27:1250-1255. [PMID: 39851078 DOI: 10.1021/acs.orglett.4c04813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
We disclose herein a chiral phosphoric-acid-catalyzed enantioselective addition reaction of alcohols to fluoroalkylated biaryl 1,3-oxoazepines, which furnished a wide range of bridged biaryls bearing a fluoroalkylated quaternary carbon stereocenter on the seven-membered ring in high yields (up to 99%) with excellent enantioselectivities (up to 98% ee). Our method can be used for the modification of several natural products and bioactive molecules. Preliminary studies revealed that the products obtained in this reaction exhibit good in vitro bioactivities against two plant pathogens.
Collapse
Affiliation(s)
- Bowen Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wei Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ting Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guimei Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 21004, China
| | - Shichao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Han TJ, Ke XY, Wang MC, Ni SF, Mei GJ. A Chemically Powered Rotary Molecular Motor Based on Reversible Oxazepine Formation. Angew Chem Int Ed Engl 2025; 64:e202418933. [PMID: 39609105 DOI: 10.1002/anie.202418933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
While biological machines are powered mainly by chemical transformations, chemically driven artificial rotary motor systems are very limited. Here, we report an aniline-phenol-based rotary molecular motor that operates via an information ratchet mechanism. The 360° directional rotation about a single covalent bond can be chemically driven by reversible oxazepine formation. Both the oxazepine formation and hydrolysis steps are kinetically gated via dynamic kinetic resolution, arising from the kinetic bias of chiral catalysts for enantiomers. Given the 95 % ee (97.5 : 2.5) and 88 % ee (94 : 6) of the individual gating steps of motor analogues, the overall directionality ratio could be calculated to be 91.7 : 8.3 (97.5 %×94 %≈91.7 %), which means that the motor will make one mistake (backward rotation) approximately every 11 to 12 turns.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Yan Ke
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, China
| | - Min-Can Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, China
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, 450001, China
| |
Collapse
|
5
|
Szabados H, Šebesta R. Recent advances in organocatalytic atroposelective reactions. Beilstein J Org Chem 2025; 21:55-121. [PMID: 39811683 PMCID: PMC11729692 DOI: 10.3762/bjoc.21.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis. Atroposelective organocatalytic reactions are discussed according to the dominant catalyst activation mode. For covalent organocatalysis, the typical enamine and iminium modes are presented, followed by N-heterocyclic carbene-catalyzed reactions. The bulk of the review is devoted to non-covalent activation, where chiral Brønsted acids feature as the most prolific catalytic structure. The last part of the article discusses hydrogen-bond-donating catalysts and other catalyst motifs such as phase-transfer catalysts.
Collapse
Affiliation(s)
- Henrich Szabados
- Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
6
|
Qu H, Huo C, Ge J, Xue X, Gu Z, Deng R. Symmetric Anion Mediated Dynamic Kinetic Asymmetric Knoevenagel Reaction for N-C and N-N Atropisomers Synthesis. Angew Chem Int Ed Engl 2024; 63:e202410012. [PMID: 38958836 DOI: 10.1002/anie.202410012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
A symmetric anion mediated dynamic kinetic asymmetric Knoevenagel reaction was established as a general and efficient method for accessing both N-C and N-N atropisomers. The resulting highly enantio-pure pyridine-2,6(1H,3H)-diones exhibit diverse structures and functional groups. The key to excellent regio- and remote enantiocontrol could be owed to the hydrogen bond between the enolate anion and triflamide block of the organocatalyst. This connected the enolate anion and iminium cation by a chiral backbone. The mechanism investigation via control experiments, correlation analysis, and density functional theory calculations further revealed how the stereochemical information was transferred from the catalyst into the axially chiral pyridine-2,6(1H,3H)-diones. The synthetic applications also demonstrated the reaction's potential.
Collapse
Affiliation(s)
- Hongyu Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chenyang Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruixian Deng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Yang Y, Ebel B, Oppel IM, Patureau FW. Oxidation of NOBINs Toward α-Spiropyrrolidones. Org Lett 2024; 26:7541-7545. [PMID: 39225416 DOI: 10.1021/acs.orglett.4c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
While the oxidation of phenols and BINOLs is well documented to lead to a broad range of useful organic scaffolds, that of NOBINs is far less explored. We investigate herein their oxidation with a number of standard chemical oxidants, leading upon skeletal rearrangement to the corresponding α-spiropyrrolidones, which represent a rare and highly valuable heterocyclic core.
Collapse
Affiliation(s)
- Yun Yang
- Institutes of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ben Ebel
- Institutes of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iris M Oppel
- Institutes of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institutes of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
8
|
Wei Z, Zhao Y, Wang T, Li J, Yuan W, Wei L, Yang X. Bridged Biaryl Atropisomers by Organocatalyzed Kinetic Asymmetric Alcoholysis. Org Lett 2024; 26:7110-7115. [PMID: 39150722 DOI: 10.1021/acs.orglett.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We disclose herein an asymmetric synthesis of axially chiral oxazepine-containing bridged biaryls via CPA-catalyzed kinetic asymmetric alcoholysis. Control experiments showed that this CPA-catalyzed alcoholysis was reversible, and lowering the reaction temperature could almost suppress the reversible reaction, thus providing a series of axially chiral oxazepine-containing bridged biaryl compounds in good to excellent enantioselectivities. The gram-scale reactions and facile derivatizations of the enantioenriched products demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wei Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
9
|
Zheng J, Feng H, Zhang X, Zheng J, Ng JKW, Wang S, Hadjichristidis N, Li Z. Advancing Recyclable Thermosets through C═C/C═N Dynamic Covalent Metathesis Chemistry. J Am Chem Soc 2024; 146:21612-21622. [PMID: 39046371 DOI: 10.1021/jacs.4c05346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Thermoset polymers have become integral to our daily lives due to their exceptional durability, making them feasible for a myriad of applications; however, this ubiquity also raises serious environmental concerns. Covalent adaptable networks (CANs) with dynamic covalent linkages that impart efficient reprocessability and recyclability to thermosets have garnered increasing attention. While various dynamic exchange reactions have been explored in CANs, many rely on the stimuli of active nucleophilic groups and/or catalysts, introducing performance instability and escalating the initial investment. Herein, we propose a new direct and catalyst-free C═C/C═N metathesis reaction between α-cyanocinnamate and aldimine as a novel dynamic covalent motif for constructing recyclable thermosets. This chemistry offers mild reaction conditions (room temperature and catalyst-free), ensuring high yields and simple isolation procedures. By incorporating dynamic C═C/C═N linkages into covalently cross-linked polymer networks, we obtained dynamic thermosets that exhibit both malleability and reconfigurability. The resulting tunable dynamic properties, coupled with the high thermal stability and recyclability of the C═C/C═N linkage-based networks, enrich the toolbox of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Hongzhi Feng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), Singapore 138632, Republic of Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), Singapore 138632, Republic of Singapore
| | - Jeffrey Kang Wai Ng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| |
Collapse
|
10
|
Sun T, Guo L, Li Q, Cao ZC. Nickel-Catalyzed Chemoselective Carbomagnesiation for Atroposelective Ring-Opening Difunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401756. [PMID: 38651647 DOI: 10.1002/anie.202401756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
There is a pressing need for methods that can connect enantioenriched organic compounds with readily accessible building blocks via asymmetric functionalization of unreactive chemical bonds in organic synthesis and medicinal chemistry. Herein, the asymmetric chemoselective cleavage of two unactivated C(Ar)-O bonds in the same molecule is disclosed for the first time through an unusual nickel-catalyzed carbomagnesiation. This reaction facilitates the evolution of a novel atroposelective ring-opening difunctionalization. Utilizing readily available dibenzo bicyclic substrates, diverse valuable axially chiral biaryls are furnished with high efficiencies. Synthetic elaborations showcase the application potential of this method. The features of this method include good atom-economy, multiple roles of the nucleophile, and a simple catalytic system that enables the precise magnesiation of an α-C(Ar)-O bond and arylation of a β-C(Ar)-O bond.
Collapse
Affiliation(s)
- Tingting Sun
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Linchao Guo
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Qi Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Zhi-Chao Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| |
Collapse
|
11
|
Chen Y, Huang S, Wang T, Li J, Zhao Y, Zhou Q, Wei L, Yang X. Chiral Brønsted Acid-Catalyzed Kinetic Resolution of Sulfoximines for the Synthesis of Benzothiadiazine-1-Oxides. J Org Chem 2024. [PMID: 38788145 DOI: 10.1021/acs.joc.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Benzothiadiazine-1-oxide scaffolds with S-stereogenic centers are prevalent in bioactive and pharmaceutical molecules. Reported works mainly focused on the metal-catalyzed asymmetric C-H amination/cyclization reaction for the synthesis of benzothiadiazine-1-oxides. Here, we reported a chiral phosphoric acid-catalyzed kinetic resolution of sulfoximines, providing chiral benzothiadiazine-1-oxides and recovered chiral sulfoximines with moderate to good enantioselectivities (s factors up to 36.6).
Collapse
Affiliation(s)
- Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shihao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
12
|
Yang Y, Wu C, Xing J, Dou X. Developing Biarylhemiboronic Esters for Biaryl Atropisomer Synthesis via Dynamic Kinetic Atroposelective Suzuki-Miyaura Cross-Coupling. J Am Chem Soc 2024; 146:6283-6293. [PMID: 38381856 DOI: 10.1021/jacs.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We herein introduce biarylhemiboronic esters as a new type of bridged biaryl reagent for asymmetric synthesis of axially chiral biaryl structures, and the palladium-catalyzed asymmetric Suzuki-Miyaura cross-coupling of biarylhemiboronic esters is developed. This dynamic kinetic atroposelective coupling reaction exhibits high enantioselectivity, good functional group tolerance, and a broad substrate scope. The synthetic application of the current method was demonstrated by transformations of the product and a programmed synthesis of chiral polyarene. Preliminary mechanistic studies suggested that the reaction proceeded via an enantio-determining dynamic kinetic atroposelective transmetalation step.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|