1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Yang C, Shen L, Xie Y, Li J, Jiang H, Zeng W. Rh(III)-Catalyzed Indole Dearomative 1,2-Alkoxyl Shift Rearrangement. Org Lett 2025; 27:4052-4056. [PMID: 40201984 DOI: 10.1021/acs.orglett.5c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A Rh(III)-catalyzed dearomative C3 alkoxylation of indoles via cascade C(sp2)-H activation and 1,2-alkoxyl shift rearrangement has been developed. This method provides an efficient strategy to rapidly assemble 3-alkoxyindolin-2-one scaffolds using alcohols as alkoxyl sources. Mechanistic studies indicate that indolyl C2 alkoxylation followed by Ag(I)/Cu(II)-mediated 1,2-alkoxyl migration is involved in this transformation.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lixing Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Xie
- School of Chemical and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jianzhang Li
- School of Chemical and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Van Hoof M, Mayer RJ, Moran J, Lebœuf D. Triflic Acid-Catalyzed Dehydrative Amination of 2-Arylethanols with Weak N-Nucleophiles in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2025; 64:e202417089. [PMID: 39431992 DOI: 10.1002/anie.202417089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The catalytic deoxyamination of readily available 2-arylethanols offers an appealing, simple, and straightforward means of accessing β-(hetero)arylethylamines of biological interest. Yet, it currently represents a great challenge to synthetic chemistry. In most cases, the alcohol has to be either pre-activated in situ or converted into a reactive carbonyl intermediate, limiting the substrate scope for some methods. Examples of direct dehydrative amination of 2-arylethanols are thus still scarce. Here, we describe a catalytic protocol based on the synergy of triflic acid and hexafluoroisopropanol, which enables the direct and stereospecific amination of a broad array of 2-arylethanols, and does not require any pre-activation of the alcohol. This approach yields high value-added products incorporating sulfonamide, amide, urea, and aniline functionalities. In addition, this approach was applied to the sulfidation of 2-arylethanols. Mechanistic experiments and DFT computations indicate the formation of phenonium ions as key intermediates in the reaction.
Collapse
Affiliation(s)
- Max Van Hoof
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Robert J Mayer
- Technical University of Munich, School of Natural Sciences, Department Chemie, 85748, Garching, Germany
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), CNRS UMR 7042, Université de Strasbourg, Université de Haute-Alsace, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
4
|
Kalomenopoulos PG, Emayavaramban B, Johnston CP. Enantioselective Synthesis of α-Aryl Ketones by a Cobalt-Catalyzed Semipinacol Rearrangement. Angew Chem Int Ed Engl 2025; 64:e202414342. [PMID: 39312676 PMCID: PMC11720393 DOI: 10.1002/anie.202414342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
A highly enantioselective cobalt-catalyzed semipinacol rearrangement of symmetric α,α-diarylallylic alcohols is disclosed. A chiral cobalt-salen catalyst generates a highly electrophilic carbocation surrogate following hydrogen atom transfer and radical-polar crossover steps. This methodology provides access to enantioenriched α-aryl ketones through invertive displacement of a cobalt(IV) complex during 1,2-aryl migration. A combination of readily available reagents, silane and N-fluoropyridinium oxidant, are used to confer this type of reactivity. An exploration into the effect of aryl substitution revealed the reaction tolerates para- and meta-halogenated, mildly electron-rich and electron-poor aromatic rings with excellent enantioselectivities and yields. The yield of the rearrangement diminished with highly electron-rich aryl rings whereas very electron-deficient and ortho-substituted arenes led to poor enantiocontrol. A Hammett analysis demonstrated the migratory preference for electron-rich aromatic rings, which is consistent with the intermediacy of a phenonium cation.
Collapse
Affiliation(s)
| | | | - Craig P. Johnston
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
5
|
Zhuang K, Haug GC, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov OV, Jin S. Cobalt-Catalyzed Carbon-Heteroatom Transfer Enables Regioselective Tricomponent 1,4-Carboamination. J Am Chem Soc 2024; 146:8508-8519. [PMID: 38382542 DOI: 10.1021/jacs.3c14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kaitong Zhuang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yangyang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Shuyu Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Huiying Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Siwen Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kunzhi Shen
- Shenyang Photosensitive Chemical Research Institute Company Limited, 8-12 No. 6 Road, Shenyang 110141, P. R. China
| | - Yao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shengfei Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
6
|
Liu J, Rong J, Wood DP, Wang Y, Liang SH, Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J Am Chem Soc 2024; 146:4380-4392. [PMID: 38300825 PMCID: PMC11219133 DOI: 10.1021/jacs.3c10989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)-F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and the poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a photoredox-mediated polar-radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radiopharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calculations, unveiled the involvement of both carbocation and CoIV-alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.
Collapse
Affiliation(s)
- Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Devin P. Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|