1
|
Zhang L, Xu Q, Xia L, Jiang W, Wang K, Cao P, Chen Q, Huang M, García de Arquer FP, Zhou Y. Asymmetrically tailored catalysts towards electrochemical energy conversion with non-precious materials. Chem Soc Rev 2025. [PMID: 40277188 DOI: 10.1039/d4cs00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Electrocatalytic technologies, such as water electrolysis and metal-air batteries, enable a path to sustainable energy storage and conversion into high-value chemicals. These systems rely on electrocatalysts to drive redox reactions that define key performance metrics such as activity and selectivity. However, conventional electrocatalysts face inherent trade-offs between activity, stability, and scalability particularly due to the reliance on noble metals. Asymmetrically tailored electrocatalysts (ATEs) - systems that are being exploited for non-symmetric designs in composition, size, shape, and coordination environments - offer a path to overcome these barriers. Here, we summarize recent developments in ATEs, focusing on asymmetric coupling strategies employed in designing these systems with non-precious transition metal catalysts (TMCs). We explore tailored asymmetries in composition, size, and coordination environments, highlighting their impact on catalytic performance. We analyze the electrocatalytic mechanisms underlying ATEs with an emphasis on their roles in water-splitting and metal-air batteries. Finally, we discuss the challenges and opportunities in advancing the performance of these technologies through rational ATE designs.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Qiaoling Xu
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Wulyu Jiang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Kaiwen Wang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Pengfei Cao
- Forschungszentrum Jülich GmbH, ER-C, 52425 Jülich, Germany
| | - Qiang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, P. R. China.
| |
Collapse
|
2
|
Zhang T, Ye Q, Liu Y, Liu Q, Han Z, Wu D, Chen Z, Li Y, Fan HJ. Data-driven discovery of biaxially strained single atoms array for hydrogen production. Nat Commun 2025; 16:3644. [PMID: 40240379 PMCID: PMC12003809 DOI: 10.1038/s41467-025-59053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The structure-performance relationship for single atom catalysts has remained unclear due to the averaged coordination information obtained from most single-atom catalysts. Periodic array of single atoms may provide a platform to tackle this inaccuracy. Here, we develop a data-driven approach by incorporating high-throughput density functional theory computations and machine learning to screen candidates based on a library of 1248 sites from single atoms array anchored on biaxial-strained transition metal dichalcogenides. Our screening results in Au atom anchored on biaxial-strained MoSe2 surface via Au-Se3 bonds. Machine learning analysis identifies four key structural features by classifying the ΔGH* data. We show that the average band center of the adsorption sites can be a predictor for hydrogen adsorption energy. This prediction is validated by experiments which show single-atom Au array anchored on biaxial-strained MoSe2 archives 1000 hour-stability at 800 mA cm-2 towards acidic hydrogen evolution. Moreover, active hotspot consisting of Au atoms array and the neighboring Se atoms is unraveled for enhanced activity.
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qitong Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, P. R. China
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, P. R. China.
| | - Qingyi Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zengyu Han
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Chen
- School of Physical Science and Technology, Tiangong University, XiQing District, Tianjin, P.R. of China
| | - Yue Li
- School of Physical Science and Technology, Tiangong University, XiQing District, Tianjin, P.R. of China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Liu M, Liu Y, Zhang X, Li L, Xue X, Humayun M, Yang H, Sun L, Bououdina M, Zeng J, Wang D, Snyders R, Wang D, Wang X, Wang C. Altering the Symmetry of Fe-N-C by Axial Cl-Mediation for High-Performance Zinc-Air Batteries. Angew Chem Int Ed Engl 2025:e202504923. [PMID: 40232866 DOI: 10.1002/anie.202504923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Fe-N-C catalyst is acknowledged as a promising alternative for the state-of-the-art Pt/C in oxygen reduction reaction (ORR) toward cutting-edge electrochemical energy conversion/storage applications. Herein, a "Cl-mediation" strategy is proposed on Fe-N-C for modulating the catalyst's electronic structure toward achieving remarkable ORR activity. By coordinating axial Cl atoms to iron phthalocyanine (FePc) molecules on carbon nanotubes (CNTs) matrix, a Cl-modulated Fe-N-C (FePc-Cl-CNTs) catalyst is synthesized. The as-prepared FePc-Cl-CNTs exhibit an improved ORR activity with a half-wave potential of 0.91 V versus RHE in alkaline solution, significantly outperforming the parent FePc-CNTs (0.88 V versus RHE). The advanced nature of the as-prepared FePc-Cl-CNTs is evidenced by a configured high-performance rechargeable Zn-air battery, which operates stably for over 150 h. The experiments and density functional theory calculations unveil that axial Cl atoms induce the transformation of FePc from its original D4h to C4v symmetry, effectively altering the electrons distribution around the Fe-center, by which it optimizes *OH desorption and subsequently boosts the reaction kinetics. This work paves ways for resolving the dilemma of Fe-N-C catalysts' exploration via engineering Fe-N-C configuration.
Collapse
Affiliation(s)
- Mengni Liu
- Department of Physics, College of Science, Shihezi University, Xinjiang, 832003, P.R. China
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yuxiao Liu
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xia Zhang
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Linfeng Li
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Xinjiang, 832003, P.R. China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Haowei Yang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P.R. China
| | - Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P.R. China
| | - Deli Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Rony Snyders
- Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, Mons, 7000, Belgium
- Materia Nova Research Center, Mons, B-7000, Belgium
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
4
|
He J, Li Q, Liu D, Feng Z, Qin C, Wang W, Yang J, Liu L, Xiao JD, Chen S, Chen X, Wang J, Yuan CZ, Yang Z. Biomimetic Square Pyramidal N 1-Fe-N 4 Single Sites with Optimized Electron Distribution for the Efficient Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500897. [PMID: 39989160 DOI: 10.1002/smll.202500897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Single atom iron-nitrogen-carbon (Fe-N-C) catalysts with a planar Fe─N4 structure are widely investigated as potential alternatives to platinum-based materials for oxygen reduction reaction (ORR), while they still suffer from the imperfect adsorption and activation of reaction intermediates, limiting their reduction efficiency. Herein, a Fe single-atom catalyst with a biomimetic square pyramidal N1-Fe-N4 site supported by honeycomb-like porous carbon (SA-FeN5/HPC) is successfully prepared by a supramolecular confinement-pyrolysis strategy. Theoretical calculations unveil that the introduction of spatially axial N ligands effectively regulates the charge redistribution around the planar Fe─N4 active centers and confers Fe active moieties with appropriate adsorption strength for intermediates, thereby resulting in accelerated ORR kinetics. Consequently, the oversaturated SA-FeN5/HPC catalyst showed excellent electrocatalytic ORR activity, achieving a half-wave potential of 0.93 V versus RHE and superior durability. Moreover, Zn-air batteries with SA-FeN5/HPC as the cathode electrocatalyst displayed excellent performance, demonstrating great potential for practical application. This work paves the way for the design and development of high-coordination single-atom electrocatalysts.
Collapse
Affiliation(s)
- Jiaxin He
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Qingyi Li
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Daomeng Liu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Ziyi Feng
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Chenchen Qin
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Wenjun Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Jia Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Lu Liu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Shuai Chen
- Division of Nanomaterials and Chemistry Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xifan Chen
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Cheng-Zong Yuan
- Institute of Resources and Ecological Environment, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, 341119, China
- School of Rare Earth, University of Science and Technology of China, Hefei, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| |
Collapse
|
5
|
Li Y, Hassan MS, Zhao X, Rogach AL. Heterostructured Electrocatalysts: from Fundamental Microkinetic Model to Electron Configuration and Interfacial Reactive Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418146. [PMID: 40040288 PMCID: PMC12004922 DOI: 10.1002/adma.202418146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Electrocatalysts can efficiently convert earth-abundant simple molecules into high-value-added products. In this context, heterostructures, which are largely determined by the interface, have emerged as a pivotal architecture for enhancing the activity of electrocatalysts. In this review, the atomistic understanding of heterostructured electrocatalysts is considered, focusing on the reaction kinetic rate and electron configuration, gained from both empirical studies and theoretical models. We start from the fundamentals of the microkinetic model, adsorption energy theory, and electric double layer model. The importance of heterostructures to accelerate electrochemical processes via modulating electron configuration and interfacial reactive microenvironment is highlighted, by considering rectification, space charge region, built-in electric field, synergistic interactions, lattice strain, and geometric effect. We conclude this review by summarizing the challenges and perspectives in the field of heterostructured electrocatalysts, such as the determination of transition state energy, their dynamic evolution, refinement of the theoretical approaches, and the use of machine learning.
Collapse
Affiliation(s)
- Yun Li
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P.R. China
| | - Md. Samim Hassan
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P.R. China
| | - Xin Zhao
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P.R. China
| | - Andrey L. Rogach
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P.R. China
- IT4InnovationsVSB – Technical University of OstravaOstrava‐Poruba70800Czech Republic
| |
Collapse
|
6
|
Sun J, Shen M, Chang AJ, Cui S, Xiu H, Wang P, Li X, Ni Y. Biological Neural Network-Inspired Micro/Nano-Fibrous Carbon Aerogel for Coupling Fe Atomic Clusters With Fe-N 4 Single Atoms to Enhance Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500419. [PMID: 40042413 DOI: 10.1002/smll.202500419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Indexed: 04/17/2025]
Abstract
Nitrogen-coordinated metal single atoms catalysts, especially with M-N4 configuration confined within the carbon matrix, emerge as a frontier of electrocatalytic research for enhancing the sluggish kinetics of oxygen reduction reaction (ORR). Nevertheless, due to the highly planar D4h symmetry configuration in M-N4, their adsorption behavior toward oxygen intermediates is limited, undesirably elevating the energy barriers associated with ORR. Moreover, the structural engineering of the carbon substrate also poses significant challenges. Herein, inspired by the biological neural network (BNN), a reticular nervous system for high-speed signal processing and transmitting, a comprehensive structural biomimetic strategy is proposed for tailoring Fe-N4 single atoms (Fe SAs) coupled with Fe atomic clusters (Fe ACs) active sites, which are anchored onto chitosan microfibers/nanofibers-based carbon aerogel (CMNCA-FeSA+AC) with continuous conductive channels and an oriented porous architecture. Theoretical analysis reveals the synergistic effect of Fe SAs and Fe ACs for optimizing their electronic structures and expediting the ORR. The ingenious biomimetic strategy will shed light on the topology engineering and structural optimization of efficient electrocatalysts for advanced electrochemical energy conversion devices.
Collapse
Affiliation(s)
- Jiaojiao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - A-Jun Chang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shiqiang Cui
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huijuan Xiu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Pengbo Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xia Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
7
|
Bao T, Wu Y, Tang C, Xi Y, Zou Y, Shan P, Zhang C, Drożd W, Stefankiewicz AR, Yuan P, Yu C, Liu C. Highly Ordered Conductive Metal-Organic Frameworks with Chemically Confined Polyoxometalate Clusters: A Dual-Functional Electrocatalyst for Efficient H 2O 2 Synthesis and Biomass Valorization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500399. [PMID: 40099650 DOI: 10.1002/adma.202500399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The design of bifunctional and high-performance electrocatalysts that can be used as both cathodes and anodes for the two-electron oxygen reduction reaction (2e- ORR) and biomass valorization is attracting increasing attention. Herein, a conserved ligand replacement strategy is developed for the synthesis of highly ordered conductive metal-organic frameworks (Ni-HITP, HITP = 2, 3, 6, 7, 10, 11-hexaiminotriphenylene) with chemically confined phosphotungstic acid (PW12) nanoclusters in the nanopores. The newly formed Ni-O-W bonds in the resultant Ni-HITP/PW12 electrocatalysts modulate the electronic structures of both Ni and W sites, which are favorable for cathodic 2e- ORR to H2O2 production and anodic 5-hydroxymethylfurfural oxidation reaction (HMFOR) to 2, 5-furandicarboxylic acid (FDCA), respectively. In combination with the deliberately retained conductive frameworks and ordered pores, the dual-functional Ni-HITP/PW12 composites enable a H2O2 production rate of 9.51 mol gcat -1 h-1 and an FDCA yield of 96.8% at a current density of 100 mA cm-2/cell voltage of 1.38 V in an integrated 2e- ORR/HMFOR system, significantly improved than the traditional 2e- ORR/oxygen evolution reaction system. This work has provided new insights into the rational design of advanced electrocatalysts and electrocatalytic systems for the green synthesis of valuable chemicals.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yunuo Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chencheng Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Pengyue Shan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wojciech Drożd
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Pei Yuan
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
8
|
Zhang Y, Chen M, He X, Zhao E, Liang H, Shang J, Liu K, Chen J, Zuo S, Zhou M. Intrinsic strain of defect sites steering chlorination reaction for water purification. Nat Commun 2025; 16:2652. [PMID: 40102410 PMCID: PMC11920279 DOI: 10.1038/s41467-025-57841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Carbon nanotube (CNT)-based heterogeneous advanced oxidation processes (AOPs) used for water purification have been exploited for several decades. Many strategies for modifying CNTs have been utilized to improve their catalytic performance in remediation processes. However, the strain fields of the intrinsic defect sites on CNT steering AOPs (such as chlorination) have not yet been reported. Here, we explored the strained defect sites for steering the chlorination process for water purification. The strained defect sites with the elongated sp2 hybridized C-C bonds boost electronic reactivity with the chlorine molecules via the initial Yeager-type adsorption. As a result, the reactive species in chlorination can be regulated on demand, such as the ratio of high-selectivity ClO• ranging from 38.8% in conventional defect-based systems to 87.5% in our strain-dominated process, which results in the generation of harmless intermediates and even deep mineralization during 2,4-DCP abatement. This work highlights the role that strain fields have on controlling the extent of chlorination reactions.
Collapse
Affiliation(s)
- Yinqiao Zhang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mohan Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xuanyu He
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing, PR China
| | - Hao Liang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Jingge Shang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, PR China
| | - Jianqiu Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Sijin Zuo
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Minghua Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| |
Collapse
|
9
|
Zhu S, Xu Q, Guan C, Chang Y, Han G, Deng B. Confined Flash Pt 1/WC x inside Carbon Nanotubes for Efficient and Durable Electrocatalysis. NANO LETTERS 2025; 25:3066-3074. [PMID: 39745543 DOI: 10.1021/acs.nanolett.4c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Exploiting cost-effective hydrogen evolution reaction (HER) catalysts is crucial for sustainable hydrogen production. However, currently reported nanocatalysts usually cannot simultaneously sustain high catalytic activity and long-term durability. Here, we report the efficient synthesis and activity tailoring of a chainmail catalyst, isolated platinum atom anchored tungsten carbide nanocrystals encapsulated inside carbon nanotubes (Pt1/WCx@CNTs), by confined flash Joule heating technique. The instantaneous carbothermal reduction reaction enables the millisecond formation of Pt1/WCx nanostructures from CNT-encapsulated polyoxometalates, where nanotubes serve as both heating conductors and robust chainmails. The Pt1/WCx@CNTs exhibit prominent catalytic performance toward acid HER with a low overpotential of 45.2 mV at 10 mA cm-2 and long-term durability over 500 h of continuous running. Mechanism studies reveal the strong metal-support interaction on Pt1/WCx optimizes the charge redistribution at the Pt1-W2C interface and the hydrogen adsorption/desorption behavior. This study offers a potential avenue for ultrafast and activity-controllable synthesis of highly stable single-atom catalysts.
Collapse
Affiliation(s)
- Sheng Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan 030012, China
| | - Qian Xu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, China
| | - Chong Guan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, China
| | - Yunzhen Chang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan 030012, China
| | - Bing Deng
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Song K, Li G, Yu J, Zheng T, Wang J. Bamboo-like nitrogen-doped carbon nanotubes directly grown from commercial carbon black for encapsulating FeCo nanoparticles as efficient oxygen reduction electrocatalysts. J Colloid Interface Sci 2025; 679:364-372. [PMID: 39461125 DOI: 10.1016/j.jcis.2024.10.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Efficient methods for preparing carbon nanotube (CNT)-confined metal catalysts are of great significance for electrocatalysis. Hence, in this study, Fe and Co promoters were added to the precursors of commercial carbon black and melamine to form N-doped CNTs confined bimetallic catalysts (FeCo@N-CNTs) via in situ pyrolysis. The FeCo@N-CNT catalysts exhibited a bamboo-like morphology with FeCo alloy nanoparticles encapsulated in the CNTs and high activity toward the oxygen reduction reaction, with a half-wave potential of 0.864 mV, higher than that of commercial Pt/C (0.827 mV) in alkaline solutions. The catalytic performance is attributable to the synergistic effects between the FeCo alloy and N-doped CNT structure. Moreover, the confinement of the FeCo nanoparticles inside the CNTs imparted the prepared catalysts with resistance to methanol poisoning and long-term stability. This versatile method of synthesizing CNTs directly from carbon black provides a new strategy for preparing high-performance non-precious-metal-based N-doped CNT catalysts for practical fuel cell applications.
Collapse
Affiliation(s)
- Kunpeng Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, 1 Shida Road, Nanchong 637009, China
| | - Guanghui Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Junchen Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tianyue Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Rd, Ningbo 315201, China.
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
11
|
Zhang F, Zhang H, Zhao Y, Li J, Guan C, Li J, Wang X, Mu Y, Zan WY, Zhu S. Partial thermal atomization of residual Ni NPs in single-walled carbon nanotubes for efficient CO 2 electroreduction. Chem Sci 2024; 15:20565-20572. [PMID: 39600498 PMCID: PMC11587534 DOI: 10.1039/d4sc07291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
CO2 electroreduction (CO2RR) is an important solution for converting inert CO2 into high value-added fuels and chemicals under mild conditions. The decisive factor lies in the rational design and preparation of cost-effective and high-performance electrocatalysts. Herein, we first prepare a novel f-SWNTs-650 catalyst via a facile partial thermal atomization strategy, where the residual Ni particles in single-walled carbon nanotubes (SWNTs) are partially converted into atomically dispersed NiN4 species. CO2RR results show that the competitive evolution hydrogen reaction (HER) predominates on pristine SWNTs, while f-SWNTs-650 switches the CO2 reduction product to CO, achieving a CO faradaic efficiency (FECO) of 97.9% and a CO partial current density (j CO) of -15.6 mA cm-2 at -0.92 V vs. RHE. Moreover, FECO is higher than 95% and j CO remains at -10.0 mA cm-2 at -0.82 V vs. RHE after 48 h potentiostatic electrolysis. Combined with systematic characterization and density functional theory (DFT) calculations, the superior catalytic performance of f-SWNTs-650 is attributed to the synergistic effect between the NiN4 sites and adjacent Ni NPs, that is, Ni NPs inject electrons into NiN4 sites to form electron-enriched Ni centers and reduce the energy barrier for CO2 activation to generate the rate-limiting *COOH intermediate, thus implementing the efficient electroreduction of CO2.
Collapse
Affiliation(s)
- Fengwei Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Han Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 Liaoning P. R. China
| | - Jingjing Li
- Address Research Institute of Resource-based Economy Transformation and Development, Shanxi University of Finance and Economics Taiyuan 030006 P. R. China
| | - Chong Guan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Jijie Li
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Xuran Wang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Yuewen Mu
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Wen-Yan Zan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Sheng Zhu
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU) Taiyuan 030012 P. R. China
| |
Collapse
|
12
|
Che T, Liu S, Wang Y, Zhao P, Yang C, Pan X, Ji H, Geng L, Sun Q, Hu Z, Li A, Zhou C, Xu LC, Zhong Y, Tian D, Yang Y, Kang L. Interfacial Charge Transfer in One-Dimensional AgBr Encapsulated inside Single-Walled Carbon Nanotube Heterostructures. ACS NANO 2024; 18:32569-32577. [PMID: 39536263 DOI: 10.1021/acsnano.4c09474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The advent of one-dimensional van der Waals heterostructure (1D vdWH) nanomaterials has provided valuable opportunities for the advancement of electronic or optical devices, as well as for exploring various condensed matter phenomena. Electron transfer is a fundamental process in host-guest interactions, significantly influencing nanoscale physicochemical processes. Elucidating the mechanism by which the host influences the electronic structure of the guest is essential for elucidating these interactions. This study reports the successful synthesis of a material system consisting of precisely resolved AgBr nanowires encapsulated within single-walled carbon nanotubes (SWCNTs) that has been successfully synthesized and utilized to investigate the intrinsic electron transfer across 1D vdWHs. Cyclic voltammetry (CV) was employed to investigate the 1D vdWH interaction between AgBr and SWCNTs, which provided a more intuitive and accurate characterization of the charge transfer from SWCNTs to AgBr. Furthermore, Kelvin probe force microscopy showed a 149 mV reduction in the average surface potential of carbon nanotubes after AgBr filling, supporting the efficacy of CV in probing electron dynamics in 1D vdWHs. Finally, theoretical calculations indicated a charge transfer of 0.11 e- per simulation cell, reinforcing the effectiveness of CV in assessing the interactions within 1D vdWHs.
Collapse
Affiliation(s)
- Tian Che
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215000, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shuai Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yatong Wang
- DIFFER-Dutch Institute for Fundamental Energy Research, De Zaale 20, Eindhoven 5612 AJ, The Netherlands
- Materials Simulation and Modeling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Pin Zhao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chengpeng Yang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaohang Pan
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongze Ji
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lin Geng
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiong Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215000, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ziyi Hu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Alei Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chengxu Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Chun Xu
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dan Tian
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215000, P. R. China
| | - Lixing Kang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
13
|
Kong X, Zong X, Lei Z, Wang Z, Zhao Y, Zhao X, Zhang J, Liu Z, Ren Y, Wu L, Zhang M, He F, Yang P. A Universal In-Situ Interfacial Growth Strategy for Various MXene-Based van der Waals Heterostructures with Uniform Heterointerfaces: The Efficient Conversion from 3D Composite to 2D Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405174. [PMID: 39072996 DOI: 10.1002/smll.202405174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe2/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g-1 current density, which suggests its tremendous application potential in lithium-ion batteries.
Collapse
Affiliation(s)
- Xianglong Kong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xiaohang Zong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zijin Lei
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zicong Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Junming Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhiliang Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yueming Ren
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Milin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Liu Y, Wu Z, Gu C, Chen J, Zhu Y, Wang L. Curved Structure Regulated Single Metal Sites for Advanced Electrocatalytic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404758. [PMID: 39140281 DOI: 10.1002/smll.202404758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Curved surface with defined local electronic structures and regulated surface microenvironments is significant for advanced catalytic engineering. Since single-atom catalysts are highly efficient and active, they have attracted much attention in recent years. The curvature carrier has a significant effect on the electronic structure regulation of single-atom sites, which effectively promote the catalytic efficiency. Here, the effect of the curvature structure with exposed metal atoms for catalysis is comprehensively summarized. First, the substrates with curvature features are reviewed. Second, the applications of single-atom catalysts containing curvature in a variety of different electrocatalytic reactions are discussed in depth. The impact of curvature effects in catalytic reactions is further analyzed. Finally, prospects and suggestions for their application and future development are presented. This review paves the way for the construction of high curvature-containing surface carriers, which is of great significance for single-atom catalysts development.
Collapse
Affiliation(s)
- Yang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Zefei Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
16
|
Wang K, Xu C, Zhao X, Jiang Y, Bisker G, Yang F. Advances in Liquid-Phase Assembly of Clusters into Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51826-51836. [PMID: 39288211 DOI: 10.1021/acsami.4c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Insight into the behaviors of molecules in confined space is highly desired for the deep understanding of the mechanism of chemical reactions in a microenvironment. Yet the direct access of molecular evolutions at atomic resolution in nanoconfinements is still challenging. Among various guests, atomically precise clusters with well-defined structures are better suited for monitoring the chemical and physical processes in nanochannels because of their visibility under electron microscopy and identical structures that ensure homogeneous interactions. Developing an efficient method for assembling clusters into a confined space is essential for advancing mechanisms of these processes. In this Perspective, we provide an overview of the assembly of clusters into single-walled carbon nanotubes (SWCNTs) in the liquid phase. We begin with the introduction of assembling methodologies, followed by a discussion of mechanisms of confined assembly in liquids. The host-guest interactions between clusters and nanotubes and the molecular reactions in nanochannels revealed by transmission electron microscopy are unveiled, and the cluster@SWCNT heterostructure-based emerging applications are highlighted. At the end, we discuss the challenges and opportunities and expound our outlook in this field.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yulong Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Zhao P, Zhang Q, Liu Y, Yin Z, Wang Y, Zheng X, Wang H, Deng Y, Fan X. Effect of Strain Engineering on the Spin State of the Ni-N 4/C Single-Atom Catalyst and Its Consequence in Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49286-49292. [PMID: 39235076 DOI: 10.1021/acsami.4c07953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Strain engineering is an effective strategy to improve the activity of catalysts, especially for flexible carbon-based materials. Nitrogen-coordinated single atomic metals on a carbon skeleton (M-Nx/C) are of interest in catalytic electroreduction reactions due to their high activity and atomic utilization. However, the effect of strain on the structure-activity relationship between the electrochemical activity and the electronic and geometric structures of Ni-Nx/C remains unclear. Here, we found that by applying tensile strain on the Ni-N4/C, the spin state of the single atom can be changed from a low-spin to a high-spin state. Moreover, the energy gap between the highest occupied d orbital of Ni and the lowest unoccupied molecular orbital of the adsorbed species narrowed. With an increasing strain rate, the catalytic activity of O2 and CO2 electroreduction can be improved. Especially for the 2e- O2 reduction, the implicit solvent model, constant-potential method, and microkinetic model were used to verify the positive effect of suitable stretching on the catalytic activity from thermodynamic and kinetic viewpoints. This work can reveal the relationship between strain, spin state, and the catalytic activity of Ni-Nx/C.
Collapse
Affiliation(s)
- Pengwei Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China
| | - Zexiang Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 300350, P.R. China
| | - Yang Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 300350, P.R. China
| | - Xuerong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 300350, P.R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 300350, P.R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 300350, P.R. China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Gu J, Zhang Y, Shi Y, Jin Y, Chen H, Sun X, Wang Y, Zhan L, Du Z, Yang S, Li M. Heteroatom Immobilization Engineering toward High-Performance Metal Anodes. ACS NANO 2024. [PMID: 39261016 DOI: 10.1021/acsnano.4c08831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode-electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.
Collapse
Affiliation(s)
- Jianan Gu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yu Shi
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Yilong Jin
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Hao Chen
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Xin Sun
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Yanhong Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Liang Zhan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Zhiguo Du
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Shubin Yang
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| |
Collapse
|
19
|
Huang Z, Li M, Yang X, Zhang T, Wang X, Song W, Zhang J, Wang H, Chen Y, Ding J, Hu W. Diatomic Iron with a Pseudo-Phthalocyanine Coordination Environment for Highly Efficient Oxygen Reduction over 150,000 Cycles. J Am Chem Soc 2024; 146:24842-24854. [PMID: 39186017 DOI: 10.1021/jacs.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Atomically dispersed Fe-N-C catalysts emerged as promising alternatives to commercial Pt/C for the oxygen reduction reaction. However, the majority of Fe-N-C catalysts showed unsatisfactory activity and durability due to their inferior O-O bond-breaking capability and rapid Fe demetallization. Herein, we create a pseudo-phthalocyanine environment coordinated diatomic iron (Fe2-pPc) catalyst by grafting the core domain of iron phthalocyanine (Fe-Nα-Cα-Nβ) onto defective carbon. In situ characterizations and theoretical calculation confirm that Fe2-pPc follows the fast-kinetic dissociative pathway, whereby Fe2-pPc triggers bridge-mode oxygen adsorption and catalyzes direct O-O radical cleavage. Compared to traditional Fe-N-C and FePc-based catalysts exhibiting superoxo-like oxygen adsorption and an *OOH-involved pathway, Fe2-pPc delivers a superior half-wave potential of 0.92 V. Furthermore, the ultrastrong Nα-Cα bonds in the pPc environment endow the diatomic iron active center with high tolerance for reaction-induced geometric stress, leading to significantly promoted resistance to demetallization. Upon an unprecedented harsh accelerated degradation test of 150,000 cycles, Fe2-pPc experiences negligible Fe loss and an extremely small activity decay of 17 mV, being the most robust candidate among previously reported Fe-N-C catalysts. Zinc-air batteries employing Fe2-pPc exhibit a power density of 255 mW cm-2 and excellent operation stability beyond 440 h. This work brings new insights into the design of atomically precise metallic catalysts.
Collapse
Affiliation(s)
- Zechuan Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Mianfeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Tao Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
20
|
Zhang L, Wang K, Zhao X, Yang G, Jiang Y, Yang F. Directional growth and reconstruction of ultrafine uranium oxide nanorods within single-walled carbon nanotubes. Chem Sci 2024:d4sc03415e. [PMID: 39263658 PMCID: PMC11382540 DOI: 10.1039/d4sc03415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
Understanding the atomic structures and dynamic evolution of uranium oxides is crucial for the reliable operation of fission reactors. Among them, U4O9-as an important intermediate in the oxidation of UO2 to UO2+x -plays an important role in the nucleation and conversion of uranium oxides. Herein, we realize the confined assembly of uranyl within SWCNTs in liquid phase and reveal the directional growth and reconstruction of U4O9 nanorods in nanochannels, enabled by in situ scanning transmission electron microscopy (STEM) e-beam stimulation. The nucleation and crystallization of U4O9 nanorods in nanochannels obey the "non-classical nucleation" mechanism and exhibit remarkably higher growth rate compared to those grown outside. The rapid growth process is found to be accompanied by the formation and elimination of U atom vacancies and strain, aiming to achieve the minimum interfacial energy. Eventually, the segments of U4O9 nanorods in SWCNTs merge into single-crystal U4O9 nanorods via structural reconstruction at the interfaces, and 79% of them exhibit anisotropic growth along the specific 〈11̄0〉 direction. These findings pave the way for tailoring the atomic structures and interfaces of uranium oxides during the synthesis process to help improve the mechanical properties and stability of fission reactors.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology Nanchang 330013 China
| | - Yulong Jiang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
21
|
Chen X, Yue D, Yu X, Chen Y, Chen X, Wang H, Li Q, Ma Z. Microenvironment Tailoring of NiCo Alloys Coupled with FePc as Efficient Bifunctional Catalysts for High-Rate Zn-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39096502 DOI: 10.1021/acs.langmuir.4c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
The practical application of Zn-air batteries require exploring cost-effective and durable bifunctional electrocatalysts. However, the simultaneous preparation of catalysts with bifunctional activities for oxygen reduction reaction (ORR) and oxygen precipitation reaction (OER) remains challenging. Herein, we synthesized a novel hybrid catalyst (FePc/NiCo/CNT), which couples NiCo alloy with FePc through electrostatic interaction. The interaction between FePc and NiCo alloy can enhance the intrinsic catalytic activity of the active site Fe-N4 and prevent the electrolyte corrosion of the metal alloy, ultimately improving the stability of the catalyst by the microenvironment-tailoring strategy. The resultant FePc/NiCo/CNT catalyst exhibits outstanding oxygen reduction reaction (ORR) activity with a half-wave potential of 0.88 V, which is attributed to the abundant Fe-Nx active sites. Furthermore, the electron interactions between NiCo/CNT and FePc accelerate electron transfer and enhance the activation of oxygen intermediates, consequently boosting the OER activity with an overpotential of 260 mV at 10 mA cm-2. The Zn-air batteries assembled with FePc/NiCo/CNT show a high power density of 175.1 mW cm-2 and excellent cycling stability for up to 430 h at 20 mA cm-2. The preparation of oxygen electrode catalysts for renewable clean energy devices can be made more convenient with this directly engineered strategy for ORR and OER active centers.
Collapse
Affiliation(s)
- Xiaorong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dandan Yue
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xinmeng Yu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yazhu Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoting Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhaoling Ma
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
22
|
Huang B, Gu Q, Tang X, Lützenkirchen-Hecht D, Yuan K, Chen Y. Experimentally validating sabatier plot by molecular level microenvironment customization for oxygen electroreduction. Nat Commun 2024; 15:6077. [PMID: 39030179 PMCID: PMC11271610 DOI: 10.1038/s41467-024-50377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Microenvironmental modifications on metal sites are crucial to tune oxygen reduction catalytic behavior and decrypt intrinsic mechanism, whereas the stochastic properties of traditional pyrolyzed single-atom catalysts induce vague recognition on structure-reactivity relations. Herein, we report a theoretical descriptor relying on binding energies of oxygen adsorbates and directly associating the derived Sabatier volcano plot with calculated overpotential to forecast catalytic efficiency of cobalt porphyrin. This Sabatier volcano plot instructs that electron-withdrawing substituents mitigate the over-strong *OH intermediate adsorption by virtue of the decreased proportion of electrons in bonding orbital. To experimentally validate this speculation, we implement a secondary sphere microenvironment customization strategy on cobalt porphyrin-based polymer nanocomposite analogs. Systematic X-ray spectroscopic and in situ electrochemical characterizations capture the pronounced accessible active site density and the fast interfacial/outward charge migration kinetics contributions for the optimal carboxyl group-substituted catalyst. This work offers ample strategies for designing single-atom catalysts with well-managed microenvironment under the guidance of Sabatier volcano map.
Collapse
Affiliation(s)
- Bingyu Huang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Qiao Gu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
23
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Shu C, Zhang W, Zhan J, Yu F. Anchoring covalent organic polymers on supports with tunable functional groups boosting the oxygen reduction performance under pH-universal conditions. J Colloid Interface Sci 2024; 661:923-929. [PMID: 38330664 DOI: 10.1016/j.jcis.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Iron phthalocyanine (FePc) is an attractive nonprecious metal candidate for electrocatalytic oxygen reduction reaction (ORR). However, its low catalytic performance under acidic and neutral conditions limits its practical application. Herein, the FePc-based covalent organic polymers (COPFePc) polymerized in situ on the functionalized multiwalled carbon nanotubes (R-MWCNT) containing different electron-withdrawing or electron-donating groups (COPFePc/R-MWCNT, R = COOH, OH or NH2) were synthesized for ORR. Among them, COPFePc/COOH-MWCNT exhibited the best ORR performance under pH-universal conditions (acidic, neutral, and alkaline). Density-functional theory (DFT) calculations demonstrate that the electron-withdrawing or electron-donating effect of the functional groups in COPFePc/R-MWCNT causes charge redistribution of the active center Fe. The COOH functional group with an electron-withdrawing ability shifts the d-band center of Fe away from the Fermi energy level and reduces the binding strength of oxygen-containing intermediates, accelerating the ORR kinetics and optimizing the catalytic activity.
Collapse
Affiliation(s)
- Chonghong Shu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| | - Jiayu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
25
|
Zhang X, Zheng R, Chang Q, Ma Z, Yang Z. Regulating the frontier orbital of iron phthalocyanine with nitrogen doped carbon nanosheets for improving oxygen reduction activity. NANOSCALE 2024; 16:8036-8045. [PMID: 38546764 DOI: 10.1039/d4nr00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Iron phthalocyanine (FePc) has attracted widespread attention for its tunable electronic structure. However, the Fe-N sites suffer from undesirable oxygen reduction activity due to the symmetric geometries. A suitable substrate was thus needed to induce electron redistribution around Fe-N to improve the activity. Herein, ultrathin nitrogen-doped carbon nanosheets (N-CNSs) were prepared by a simple high temperature pyrolysis. Then iron phthalocyanine was loaded on the ultrathin nitrogen-doped carbon nanosheets (FePc@N-CNSs) by a low-cost and simple solution method. This composite catalyst shows an excellent ORR activity with a half potential of 0.88 V, an onset potential of 0.99 V and durability superior to commercial Pt/C. When used as an air cathode catalyst for rechargeable zinc-air batteries, FePc@N-CNS modified batteries outperform Pt/C + RuO2 modified batteries with higher power density and superior constant current charge-discharge cycling stability of 37 hours. The regulated electronic structure of FePc by the N-CNS substrate was revealed further by DFT calculations, which explained the enhanced adsorption of the active center to the intermediates and the increased ORR performance.
Collapse
Affiliation(s)
- Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, 46 Jianshe Road, Xinxiang 453007, China.
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Rui Zheng
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, 46 Jianshe Road, Xinxiang 453007, China.
| | - Qingfang Chang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, 46 Jianshe Road, Xinxiang 453007, China.
| | - Zhongjun Ma
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Zongxian Yang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, 46 Jianshe Road, Xinxiang 453007, China.
| |
Collapse
|
26
|
Zhao X, Wang K, Yang G, Wang X, Qiu C, Huang J, Long Y, Yang X, Yu B, Jia G, Yang F. Sorting of Cluster-Confined Metallic Single-Walled Carbon Nanotubes for Fabricating Atomically Vacant Uranium Oxide. J Am Chem Soc 2023; 145:25242-25251. [PMID: 37767700 DOI: 10.1021/jacs.3c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Single-walled carbon nanotube (SWCNT) heterostructures have shown great potential in catalysis, magnetism, and nanofluidics, in which host SWCNTs with certain conductivity (metallic or semiconducting) are highly required. Herein, inspired by the large molecular weight and redox properties of polyoxometalate (POM) clusters, we reported the selective separation of POM encapsulated metallic SWCNTs (POM@m-SWCNTs) with a uniform diameter through density gradient ultracentrifugation (DGU). The confined POMs increased the SWCNT density and amplified the nanotubes' density difference, thus greatly lowering the centrifugal force (70,000g) of DGU. With this strategy, a series of POM@m-SWCNTs of ∼1.2 nm with high purity were sorted. The mechanism supported by theoretical and experimental evidence showed that the separation of m-SWCNTs depended on not only nanotube/cluster size but also the conductivity of SWCNTs. The smallest 1.2 nm m-SWCNT that can exactly accommodate a 0.9 nm-{Mo6} cluster exhibited the maximum electron transfer to inner clusters; thus, intertube π-π stacking of such m-SWCNTs was greatly loosened, leading to the preferential dispersion into individual ones and partitioning in the uppermost layer after DGU. As a proof-of-concept application, this sorting strategy was extended to separate heavy-element 238U-encapsulated m-SWCNTs. The phase-pure, tiny (1-2.5 nm) U4O9 crystals with atomic vacancy clusters were fabricated on m-SWCNTs through growth kinetic control. This work may provide a general way to construct desired actinide materials on specific SWCNTs.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chenguang Qiu
- Department of Electronics, Peking University, Beijing 100871, China
| | - Jian Huang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
| | - Yanglin Long
- Department of Electronics, Peking University, Beijing 100871, China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guodong Jia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|