1
|
Li J, Yang Y, Hii SS, Zhu X, Wang Y. Structural isomers of imine-linked covalent organic cages with divergent photocatalytic properties. Chem Commun (Camb) 2025. [PMID: 40260976 DOI: 10.1039/d5cc00380f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The impact of linkage orientation as structural isomers on the properties of covalent organic cages (COCs) has been investigated. Isomeric imine-linked COCs, featuring triphenylamine as the donor and anthracene as the acceptor, TNCA and TCNA, were synthesized and exhibited significant differences in their optoelectronic properties, which in turn affect their photocatalytic performance.
Collapse
Affiliation(s)
- Jiajia Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yanping Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shan Shiang Hii
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Zhang G, Xu N, Yang M, Wang W, Su K, Yuan D. Ultrastable Imidazole-linked Porous Organic Cages for Ammonia Capture and Detection. Angew Chem Int Ed Engl 2025; 64:e202423226. [PMID: 39777845 DOI: 10.1002/anie.202423226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Here, we report the facile synthesis of imidazole-linked porous organic cages (IPOCs) via an in situ cyclization reaction protocol. Specifically, three IPOCs with [2+4] lantern-like structures and one with a [3+6] triangular prism structure were successfully prepared through condensation reactions between tetraformyl-functionalized calix[4]arene and bis(o-phenylenediamine) monomers in a single pot. Notably, these IPOCs exhibit high porosity, with Brunauer-Emmett-Teller (BET) specific surface areas reaching up to 1162 m2 g-1. Moreover, they demonstrate excellent chemical stability in both strong acidic and alkaline solutions. Furthermore, IPOC-2 and IPOC-4 display a remarkable NH3 capturing capability, with uptakes of up to 11.5 mmol g-1 at 1 bar and 298 K, surpassing most reported porous organic materials. Additionally, IPOC-1 exhibits highly efficient fluorescent quenching sensing of aqueous NH3, with a detection limit as low as 3.35×10-6 M. These findings strongly suggest the potential for widespread use of imidazole linkages in the development of robust functional porous organic cage materials for diverse applications.
Collapse
Affiliation(s)
- Guoshi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Ning Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Benchimol E, O'Connor HM, Schmidt B, Bogo N, Holstein JJ, Lovitt JI, Shanmugaraju S, Stein CJ, Gunnlaugsson T, Clever GH. Chiral Pd 2L 4 Capsules from Readily Accessible Tröger's Base Ligands Inducing Circular Dichroism on Fullerenes C 60 and C 70. Angew Chem Int Ed Engl 2025; 64:e202421137. [PMID: 39625997 DOI: 10.1002/anie.202421137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Indexed: 12/14/2024]
Abstract
The induction of chirality on pristine fullerenes through non-covalent embedding in an asymmetric nano-confinement has only been rarely reported. Bringing molecules with such a unique electronic structure and broad application range into a chiral environment is particularly appealing for the development of chiroptical materials, enantioselective photoredox catalysts and systems showing chirality-induced spin selectivity (CISS). In this study, we report the formation of a chiral, configurationally stable Pd2L4 capsule assembled from a C2-symmetric, 'ribbon-shaped' ligand with a Tröger's base naphthalimide (TbNaps) backbone, easily synthesized in three steps from commercially available compounds. Embedding chirality directly into the ligand backbone ensures a relatively lightweight receptor design whose aromatic panels create a strongly shielded inner cavity of about 700 Å3 volume. Fullerenes C60 and C70, as well as a pair of corannulenes, can be bound in acetonitrile (where unsubstituted fullerenes are insoluble) and X-ray structures of host-guest complexes were obtained. Tight interactions between the chiral host and the fullerene guests leads to the induction of a circular dichroism (CD) on the characteristic absorption bands of the forbidden π-π* transitions of the fullerenes, backed up by sTDA TD-DFT calculations and detailed investigation of the electronic excited states.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Helen M O'Connor
- School of Chemistry, Centre for Synthesis and Chemical Biology and Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin, 2, Ireland
| | - Björn Schmidt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Nicola Bogo
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - June I Lovitt
- School of Chemistry, Centre for Synthesis and Chemical Biology and Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin, 2, Ireland
| | | | - Christopher J Stein
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Germany
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology and Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin, 2, Ireland
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Qiu F, Zhang X, Wang W, Su K, Yuan D. Phenol[4]arenes: Excellent Macrocyclic Precursors for Constructing Chiral Porous Organic Cages. J Am Chem Soc 2025. [PMID: 40025876 DOI: 10.1021/jacs.4c16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The development of new chiral building blocks for constructing complex chiral architectures, such as macrocycles and cages, is both crucial and challenging. Although concave-shaped calixarenes have been established as versatile building blocks for the synthesis of cage compounds, there are no reports on cages constructed from chiral calix[4]arene derivatives. Herein, we present a straightforward and effective method for gram-scale synthesis of a new member of chiral calix[4]arene macrocycle enantiomers, namely, phenol[4]arene (PC[4]A). As a proof of concept, we functionalized these enantiomers into tetraformylphenol[4]arene (PC[4]ACHO) derivatives via the Duff reaction to construct chiral porous organic cages (CPOCs) using polyamine synthons. Specifically, we employ two fluorescent amine synthons, bis(4-aminophenyl)phenylamine and tris(4-aminophenyl)amine, to assemble with PC[4]ACHO enantiomers, resulting in [2 + 4] lantern-shaped and [6 + 8] truncated octahedral CPOCs, respectively. These structures have been unambiguously characterized by single-crystal X-ray diffraction and circular dichroism (CD) spectroscopy. Notably, the [6 + 8] truncated CPOCs exhibit internal diameters of approximately 3.1 nm, a cavity volume of around 5300 Å3, and high specific surface areas of up to 1300 m2 g-1 after desolvation, making them among the largest CPOCs reported. Additionally, investigations into their chiral sensing performance demonstrate that these PC[4]A-based CPOCs enable the enantioselective recognition of amino acids and their derivatives. This work strongly suggests that PC[4]A can serve as an excellent building block for the rational design of chiral materials with practical applications.
Collapse
Affiliation(s)
- Fenglei Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xinting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jiang J, Kou J, Wu Q, Chen L, Geng Y, Shan G, Sun C, Su Z, Wang X. Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity. Angew Chem Int Ed Engl 2025; 64:e202410665. [PMID: 39825671 DOI: 10.1002/anie.202410665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/20/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity. It's also used to selectively recover gold from a variety of complex aqueous solutions in a stable and efficient manner. The theoretical calculations and dedicated experiments suggest that anion-π interactions between the [AuCl4]- and TFP fractions on T-PAC cooperated with S/N boning and redox effects play the decisive role in the highly efficient gold recovery performance.
Collapse
Affiliation(s)
- Jianzhu Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Junning Kou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qi Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Li Chen
- Department of Chemistry, Faculty of Science, Yanbian University Yanji, Jilin, 133002, China
| | - Yun Geng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Guogang Shan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Xinlong Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| |
Collapse
|
6
|
Shi C, Xu G, Qiu H, Li Y, Lu X, Jiang J, Wang L. Tröger's base-embedded macrocycles with chirality. Chem Commun (Camb) 2025; 61:2450-2467. [PMID: 39785990 DOI: 10.1039/d4cc05134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The birth and development of supramolecular chemistry have heralded a new era, where macrocycles have become an irreplaceable research tool. Therefore, the construction of novel macrocycles has become a hot spot. Tröger's base (TB), as a fragment with both rigidity and chirality, promises tremendous potential in the realm of supramolecular chemistry, and its unique properties continue to motivate researchers to explore its inclusion in macrocycles. However, the construction of a TB-embedded macrocycle is always difficult due to the frequent occurrence of excessive tension. For successful synthesis, part of the function of TB in macrocycle is often overlooked or sacrificed to facilitate the macrocyclization process, leading to serious deficiencies in the utilization of the functions of TB. Thus, the research on TB-embedded macrocycles is still in its preliminary stage. Hence, in this review, TB-embedded macrocycles are highlighted, focusing not only on the linkers of these macrocycles but also on the correlation between the properties of TB and TB-embedded macrocycles. We hope that this review will further guide the synthesis of more excellent macrocycles.
Collapse
Affiliation(s)
- Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Guangzhou Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Heng Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yumei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Key Lab of Surficial Geochem of MOE, School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiancai Lu
- Key Lab of Surficial Geochem of MOE, School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wu Y, Li Y, Li S, Ma Y, Ji W, Sun Y. The series of L-lysine-derived gelators-modified multifunctional chromatography stationary phase for separation of chiral and achiral compounds. J Chromatogr A 2024; 1733:465228. [PMID: 39163701 DOI: 10.1016/j.chroma.2024.465228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
In this study, using chiral L-lysine as the molecular skeleton, three kinds of L-lysine-derived gelators (GBLB, GBLF and GFLF) were synthesized and then bonded to the surface of silica matrix (5 μm) by amide condensation to prepare a series of multifunctional chromatography stationary phases (GBLB-SiO2, GBLF-SiO2, and GFLF-SiO2) were prepared. The L-lysine-derived gelators not only possess chiral recognition ability, but also can spontaneously form oriented and ordered network structures in liquid medium through the interaction of non-covalent bonding forces such as hydrogen bonding, π-π stacking, and van der Waals forces. The comprehensive effect of multiple weak interaction sites enhances the molecular recognition ability and further improves the separation diversity of different types of compounds on stationary phases. The separation and evaluation of chiral compounds showed that benzoin, 1-phenyl-ethanol, 1-phenyl-propanol and 6-hydroxyflavanone could be separated in normal phase mode (NPLC). The separation of different types of non-chiral compounds, such as sulfonamides, nucleosides, nucleobases, polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids, were achieved in hydrophilic interaction/reversed-phase/ion-exchange mode (HILIC/RPLC/IEC), and the separation of polarized compounds could be performed under the condition of ultrapure water as the mobile phase, which has the typical retention characteristics of per aqueous liquid chromatography (PALC). The effects of organic solvent content, temperature, pH value, and buffer salt concentration on the retention and separation performance of the column were investigated. Comparison of the three prepared columns showed that the separation performance (such as aromatic selectivity) could be improved by increasing the types of functional groups on the surface of the stationary phase and the number of aromatic groups. In a word, the prepared stationary phase have multiple retention properties, can simultaneously separate chiral compounds and various types of achiral compounds. This work provides an idea for developing multifunctional liquid chromatography stationary phase materials, and further expands the application of gelators in separation science.
Collapse
Affiliation(s)
- Yongli Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Shaorong Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
8
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Kou J, Zhu Z, Jiang J, Chen L, Zhang K, Shan G, Wang X, Su Z, Sun C. A porous aromatic cage-based electrochemical sensor for enantioselective recognition of DOPA. Chem Commun (Camb) 2024; 60:6949-6952. [PMID: 38887804 DOI: 10.1039/d4cc02622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An electrochemical sensor based on porous aromatic cages was reported, which can achieve chiral sensing of DOPA enantiomers. The prepared sensor can achieve a recognition efficiency of up to 2.6 for DOPA enantiomers. The enhanced recognition efficiency could be attributed to the cooperation of intermolecular interactions, and the efficient charge transfer process.
Collapse
Affiliation(s)
- Junning Kou
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Ziyu Zhu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Jianzhu Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Li Chen
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Kunhao Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Xinlong Wang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Zhongmin Su
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Chunyi Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
10
|
Liu Y, Wang P, Yang Z, Wang L, Li Z, Liu C, Liu B, Sun Z, Pei H, Lv Z, Hu W, Lu Y, Zhu G. Lignin Derived Ultrathin All-Solid Polymer Electrolytes with 3D Single-Ion Nanofiber Ionic Bridge Framework for High Performance Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400970. [PMID: 38623832 DOI: 10.1002/adma.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Indexed: 04/17/2024]
Abstract
The lignin derived ultrathin all-solid composite polymer electrolyte (CPE) with a thickness of only 13.2 µm, which possess 3D nanofiber ionic bridge networks composed of single-ion lignin-based lithium salt (L-Li) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the framework, and poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) as the filler, is obtained through electrospinning/spraying and hot-pressing. t. The Li-symmetric cell assembled with the CPE can stably cycle more than 6000 h under 0.5 mA cm-2 with little Li dendrites growth. Moreover, the assembled Li||CPE||LiFePO4 cells can stably cycle over 700 cycles at 0.2 C with a super high initial discharge capacity of 158.5 mAh g-1 at room temperature, and a favorable capacity of 123 mAh g-1 at -20 °C for 250 cycles. The excellent electrochemical performance is mainly attributed to the reason that the nanofiber ionic bridge network can afford uniformly dispersed single-ion L-Li through electrospinning, which synergizes with the LiTFSI well dispersed in PEO to form abundant and efficient 3D Li+ transfer channels. The ultrathin CPE induces uniform deposition of Li+ at the interface, and effectively inhibit the lithium dendrites. This work provides a promising strategy to achieve ultrathin biobased electrolytes for solid-state lithium ion batteries.
Collapse
Affiliation(s)
- Yuhan Liu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Pinhui Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhenyue Yang
- Frontier Interdisciplinary Research Institute, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Liying Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhangnan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Chengzhe Liu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Baijun Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Hanwen Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhongyuan Lv
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wei Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 East North Third Ring Road, Beijing, 100029, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
11
|
Du Z, Xie J, Liu Y, Tang Y, Chen Q, Li X, Zhu K. A π-extended molecular belt with selective binding capability for fullerene C 70. Chem Commun (Camb) 2024; 60:6387-6390. [PMID: 38831735 DOI: 10.1039/d4cc01966k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A molecular belt incorporating naphthalene moieties, featuring an ellipsoidal cavity, was precisely engineered through bottom-up synthesis. Its pre-arranged geometry exhibits excellent complementarity to fullerene C70, resulting in remarkable selective binding ability (K = 1.3 × 106 M-1) for C70 compared to C60 (K = 176 M-1), forming a 1 : 1 complex. This superiority was unequivocally demonstrated by the single crystal structure of the complex, which revealed outstanding concave-convex shape complementarity between the two components. This highlights the potential application of molecular belts in the purification and separation of fullerenes.
Collapse
Affiliation(s)
- Zhenglin Du
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jialin Xie
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yandie Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yisong Tang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Xie H, Xiao Z, Song Y, Jin K, Liu H, Zhou E, Cao J, Chen J, Ding J, Yi C, Shen X, Zuo C, Ding L. Tethered Helical Ladder-Type Aromatic Lactams. J Am Chem Soc 2024; 146:11978-11990. [PMID: 38626322 DOI: 10.1021/jacs.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.
Collapse
Affiliation(s)
- Huidong Xie
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Song
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Jin
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Liu
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiangzhao Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chenyi Yi
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Cui D, Bai F, Zhang L, Li W, Zhang Y, Wang K, Wu M, Sun C, Zang H, Zou B, Wang X, Su Z. Piezofluorochromism in Hierarchical Porous π-stacked Supermolecular Spring Frameworks from Aromatic Chiral Cages. Angew Chem Int Ed Engl 2024; 63:e202319815. [PMID: 38299255 DOI: 10.1002/anie.202319815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Piezochromic materials that exhibit pressure-dependent luminescence variations are attracting interest with wide potential applications in mechanical sensors, anticounterfeiting and storage devices. Crystalline porous materials (CPMs) have been widely studied in piezochromism for highly tunable luminescence. Nevertheless, reversible and high-contrast emission response with a wide pressure range is still challenging. Herein, the first example of hierarchical porous cage-based πOF (Cage-πOF-1) with spring structure was synthesized by using aromatic chiral cages as building blocks. Its elastic properties evaluated based on the bulk modulus (9.5 GPa) is softer than most reported CPMs and the collapse point (20.0 GPa) significantly exceeds ever reported CPMs. As smart materials, Cage-πOF-1 displays linear pressure-dependent emission and achieves a high-contrast emission difference up to 154 nm. Pressure-responsive limit is up to 16 GPa, outperforming the CPMs reported so far. Dedicated experiments and density functional theory (DFT) calculations illustrate that π-π interactions-dominated controllable structural shrinkage and porous-spring-structure-mediated elasticity is responsible for the outstanding piezofluorochromism.
Collapse
Affiliation(s)
- Dongxu Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Fuquan Bai
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130024, China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Yuxiao Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130024, China
| | - Min Wu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hongying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| |
Collapse
|
14
|
Xu Z, Ye Y, Liu Y, Liu H, Jiang S. Design and assembly of porous organic cages. Chem Commun (Camb) 2024; 60:2261-2282. [PMID: 38318641 DOI: 10.1039/d3cc05091b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Porous organic cages (POCs) represent a notable category of porous materials, showing remarkable material properties due to their inherent porosity. Unlike extended frameworks which are constructed by strong covalent or coordination bonds, POCs are composed of discrete molecular units held together by weak intermolecular forces. Their structure and chemical traits can be systematically tailored, making them suitable for a range of applications including gas storage and separation, molecular separation and recognition, catalysis, and proton and ion conduction. This review provides a comprehensive overview of POCs, covering their synthesis methods, structure and properties, computational approaches, and applications, serving as a primer for those who are new to the domain. A special emphasis is placed on the growing role of computational methods, highlighting how advanced data-driven techniques and automation are increasingly aiding the rapid exploration and understanding of POCs. We conclude by addressing the prevailing challenges and future prospects in the field.
Collapse
Affiliation(s)
- Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yangzhi Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yilan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|