1
|
Jiang J, Zhang Y, Liu Y, Liu S, Sun T, Zhao B, Wang R, Zhang C, Huo M, Zhou D, Dong S. Selective activation of peroxymonosulfate through gating heteronuclear diatomic distance for flexible generation of high-valent cobalt-oxo species or sulfate radicals. WATER RESEARCH 2025; 279:123488. [PMID: 40106863 DOI: 10.1016/j.watres.2025.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Heteronuclear diatomic engineering has been widely applied to generate selective or nonselective active species in Fenton-like system for wastewater treatment. However, active species adapted to diverse wastewater were different, and flexible control of active species has remained elusive, often necessitating complex and repetitive atom modifications. Here, we proposed a diatomic distance gating strategy that adjusted the spintronic structure of cobalt site for flexible transformation of high-valent cobalt-oxo and sulfate radical for adapted wastewater treatment. Electron paramagnetic resonance spectra, magnetic susceptibility-temperatur curve and partial density of states revealed electron transfer from dx2-y2, dz2 and dyz orbitals of high-spin cobalt to peroxymonosulfate for high-valent cobalt-oxo generation at 3.8 nm, and from dz2 orbital of medium-spin cobalt to peroxymonosulfate for sulfate radical generation at 2.5 nm. The Fenton-like system with 3.8 nm of diatomic distance preferentially degraded contaminants with low n-octanol/water partition constant and high ionization potential, while Fenton-like system with 2.5 nm of diatomic distance readily degraded contaminants with high Hammett substituent constant and low dissociation constant. This study elucidated the effect of diatomic distance on Fenton-like chemistry and provided a blueprint for the design of intelligent Fenton-like system for treating diverse wastewater treatment scenarios.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanan Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yansong Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Shengda Liu
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, Jilin, China
| | - Tongze Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Bowen Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Ruixin Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Chongqing Research Institute, Jilin University, 401120, Chongqing, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
You X, Guo Z, Jiang Q, Xia J, Wang S, Yang X, Zhuang Z, Li Y, Xiang H, Li H, Yu B. Magnetic-Field-Induced Spin Transition in Single-Atom Catalysts for Nitrate Electrolysis to Ammonia. NANO LETTERS 2025; 25:8704-8712. [PMID: 40364618 DOI: 10.1021/acs.nanolett.5c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Electrochemical nitrate reduction (NitRR) using single-atom catalysts (SACs) offers a promising pathway for sustainable ammonia production. Herein, we explore the use of external magnetic fields to regulate the spin state of Ru SACs supported on nitrogen-doped carbon (Ru-N-C), aiming to optimize their catalytic performance toward NitRR. Under magnetic field conditions, Ru-N-C exhibits a remarkable NH3 yield rate of ∼38 mg L-1 h-1 and a Faradaic efficiency of ∼95% over 200 h. Our spectroscopic and magnetic characterization demonstrates that the external magnetic field induces a spin transition to a high-spin state in Ru SACs/N-C. Theoretical analysis further suggests that the increased spin state of Ru shifts the density of states away from the Fermi level, weakening the adsorption affinity for *NH2. Economic analysis hints at cost effectiveness and scalability. Overall, this study demonstrates that magnetic-field-induced spin modulation effectively optimizes NitRR electrocatalysts.
Collapse
Affiliation(s)
- Xingchao You
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Zhongyuan Guo
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiuling Jiang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Junkai Xia
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Suwen Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaohui Yang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yongfu Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Hai Xiang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Bing Yu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Zhang H, Wan F, Li X, Zhang M, Zhang N, Wang P, Xiong S, Feng J, Xi B. Atomically Dispersed Co-Ru Dimer Catalyst Boosts Conversion of Polysulfides toward High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500950. [PMID: 40317766 DOI: 10.1002/adma.202500950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The sluggish sulfur redox reaction in lithium-sulfur (Li-S) batteries triggers the development of highly active electrocatalysts for accelerating the polysulfides conversion kinetics. Rational design of catalysts with satisfactory active sites and high atom utilization toward multistep sulfur-based conversion is much desired but remains challenging. Here, it is shown that the well-designed Co-Ru dimer sites confined on carbon matrix could effectively manipulate the sulfur-involved conversion reactions and thus improve Li-S batteries performance. The orbital coupling of Co-Ru dimer induces the orbital regulation for the atomic pair, resulting the favored lithium polysulfides adsorption strength and lowed conversion energy barrier, as confirmed by systematic electrochemical characterizations and theoretical calculation. Besides, the intrinsic catalytic activity of Ru from Co-Ru moiety also accelerates the Li2S dissociation reaction. Taken together, the as-constructed Co-Ru dimer sites render the Li-S battery with excellent performance, delivering energy density of 468 Wh kg-1 of total assembled pouch cell. This study offers a rational design of catalysts for boosting the catalytic performance in Li-S batteries.
Collapse
Affiliation(s)
- Hua Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Fei Wan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaogang Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingzhe Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Nan Zhang
- Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
4
|
Li J, Wang J, Wang S, Ji Y, Ji K, Shi L, Wang X, Liu Y, Fu W, Wang G, Xie J, Yang Z, Yan YM. Lattice Distortion Broadens the e g Band of Co 3O 4 to Facilitate p-d Hybridization for Enhanced Electrochemical Nitrate Synthesis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21065-21073. [PMID: 40135777 DOI: 10.1021/acsami.4c20269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The electrochemical nitrogen oxidation reaction (NOR) presents a sustainable pathway for nitrate synthesis under mild conditions; however, the process is hindered by the inadequate adsorption and activation of N2 on electrocatalysts. In this study, we utilized Co3O4 as a model catalyst and engineered lattice distortions by introducing oxygen vacancies, which expanded the eg band of the active sites to enhance N2 activation. The modified Co3O4 catalyst achieved a Faradaic efficiency of 10.68% and a nitrate yield of 58.80 μg·h-1·mgcat-1. Comprehensive experimental and density functional theory (DFT) analyses demonstrated that these modifications resulted in a shortened Co-N bond length and an elongated N≡N bond, leading to improved p-d hybridization between N2 and Co sites. Moreover, the enhancements in catalytic performance were also attributed to the improved electron transfer properties stemming from the altered band structure of Co3O4. This work provides innovative design principles for catalysts aimed at facilitating complex electrocatalytic reactions with multiple kinetics.
Collapse
Affiliation(s)
- Jingxian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kang Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guixi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Cao Y, Liu Y, Zheng X, Yang J, Wang H, Zhang J, Han X, Deng Y, Rupprechter G, Hu W. Quantifying Asymmetric Coordination to Correlate with Oxygen Reduction Activity in Fe-Based Single-Atom Catalysts. Angew Chem Int Ed Engl 2025; 64:e202423556. [PMID: 39844730 DOI: 10.1002/anie.202423556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
Precisely manipulating asymmetric coordination configurations and examining electronic effects enable to tunethe intrinsic oxygen reduction reaction (ORR) activity of single-atom catalysts (SACs). However, the lackof a definite relationship between coordination asymmetry and catalytic activity makes the rational design of SACs ambiguous. Here, we propose a concept of "asymmetry degree" to quantify asymmetric coordination configurations and assess the effectiveness of active moieties in Fe-based SACs. A theoretical framework is established, elucidating the volcanic relationship between asymmetry degree and ORR activity by constructing a series of Fe-based SAC models doped with non-metal atoms (B, P, S, Se, and Te) in the first or second coordination sphere, which aligns with Sabatier principle. The predicted ORR activity of Fe asymmetric active moieties is then experimentally validated using asymmetry degree. The combined computational and experimental results suggest that single-atom moiety with a moderate asymmetry degree exhibits optimal intrinsic ORR activity, because breaking the square-planar symmetry of FeN4 can alter the electronic population of the Fe 3d-orbital, thereby optimizing the adsorption-desorption strength of intermediates and thus enhancing the intrinsic ORR activity. This fundamental understanding of catalytic activity from geometric and electronic aspects offers a rational guidance to design high-performance SACs with asymmetric configurations.
Collapse
Affiliation(s)
- Yanhui Cao
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Haozhi Wang
- School of Materials Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060, Vienna, Austria
| | - Wenbin Hu
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Ren X, Zhai Y, Yang N, Wang B, Liu S(F. Lattice Oxygen Redox Dynamics in Zeolite-Encapsulated CsPbBr 3 Perovskite OER Electrocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412679. [PMID: 39783715 PMCID: PMC11848567 DOI: 10.1002/advs.202412679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX3) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO2 layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites. Using CsPbBrxI3- x@AlPO-5 (x = 0, 1, 2, 3) as a model OER catalyst, it is found that the CsPbBr3@AlPO-5 behaves oxygen-intercalation pseudocapacitance during surface restructuring due to absence of halogen-ion migration and phase separation in the CsPbBr3, achieving a larger diffusion rate of OH- within the core-shell structure. Moreover, distinct from the single-metal-site mechanism of MAPbBr3@AlPO-5, experimental and theoretical investigations reveal that the soft lattice nature of CsPbBr3 triggers the oxygen-vacancy-site mechanism via the CsPbBr3/α-PbO2 interface, resulting in excellent OER performance. Owing to the variety and easy tailoring of lead-halide perovskite compositions, these findings pave a way for the development of novel perovskite@zeolite type catalysts for efficient oxygen electrocatalysis.
Collapse
Affiliation(s)
- Xiangrong Ren
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Yiyue Zhai
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
- School of Civil and Architecture EngineeringXi'an Technological UniversityXi'an710021P. R. China
| | - Na Yang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryInternational Center of Future ScienceJilin UniversityChangchun130012P. R. China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- CNNP Optoelectronics Technology2828 Canghai RoadLingangShanghai201308China
| |
Collapse
|
7
|
Xu N, Jin Y, Liu Q, Yu M, Wang X, Wang C, Tu W, Zhang Z, Geng Z, Suenaga K, Cheng F, Song E, Peng Z, Xu J. Rational Design of Diatomic Active Sites for Elucidating Oxygen Evolution Reaction Performance Trends. Angew Chem Int Ed Engl 2025; 64:e202413749. [PMID: 39363752 DOI: 10.1002/anie.202413749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Diatomic catalysts, especially those with heteronuclear active sites, have recently attracted significant attention for their advantages over single-atom catalysts in reactions with relatively high energy barrier, e.g. oxygen evolution reaction. Rational design and synthesis of heteronuclear diatomic catalysts are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report macrocyclic precursor constrained strategy to fabricate series of transition metal (MT, Ni, Co, Fe, Mn, or Cu)-noble (MN, Ir or Ru) centers in carbon material. One notable performance trend is observed in the order of Cu-MN
Collapse
Affiliation(s)
- Nanfeng Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxiang Jin
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiunan Liu
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Meng Yu
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Wang
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Tu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Fangyi Cheng
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Erhong Song
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhangquan Peng
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junyuan Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Jin B, Zhang W, Wei S, Zhang K, Wang H, Liu G, Li J. Magnesium-promoted rapid self-reconstruction of NiFe-based electrocatalysts toward efficient oxygen evolution. J Colloid Interface Sci 2025; 677:208-216. [PMID: 39089127 DOI: 10.1016/j.jcis.2024.07.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
The acceleration of active sites formation through surface reconstruction is widely acknowledged as the crucial factor in developing high-performance oxygen evolution reaction (OER) catalysts for water splitting. Herein, a simple one-step corrosion method and magnesium (Mg)-promoted strategy are reported to develop the NiFe-based catalyst with enhanced OER performance. The Mg is introduced in NiFe materials to preparate a "pre-catalyst" Mg-Ni/Fe2O3. In-situ Raman shows that Mg doping would accelerate the self-reconstruction of Ni/Fe2O3 to form active NiOOH species during OER. In-situ infrared indicates that Mg doping benefits the formation of *OOH intermediate. Theoretical analysis further confirms that Mg doping can optimize the adsorption of oxygen intermediates, accelerating the OER kinetics. Accordingly, the Mg-Ni/Fe2O3 catalyst exhibits excellent OER performance with overpotential of 168 mV at 10 mA cm-2. The anion exchange membrane water electrolyzer achieved 200 mA cm-2 at voltage of 1.53 V, showing excellent stability over 500 h as well. This work demonstrates the potential of Mg-promoted strategy in regulating the activity of transition metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Boxuan Jin
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenwen Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuaichong Wei
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kai Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongyu Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guihua Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Jingde Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
9
|
Liang H, Hui S, Zhang L, Tao K, Chen Q, Lu W, Wu H. High-Density Dual Atoms Pairs Coupling for Efficient Electromagnetic Wave Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408396. [PMID: 39604231 DOI: 10.1002/smll.202408396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dual atoms (DAs), characterized by flexible structural tunability and high atomic utilization, hold significant promise for atom-level coordination engineering. However, the rational design with high-density heterogeneous DAs pairs to promote electromagnetic wave (EMW) absorption performance remains a challenge. In this study, high-density Ni─Cu pairs coupled DAs absorbers are precisely constructed on a nitrogen-rich carbon substrate, achieving an impressive metal loading amount of 4.74 wt.%, enabling a huge enhancement of the effective absorption bandwidth (EAB) of EMW from 0 to 7.8 GHz. Furthermore, the minimum reflection loss (RLmin) is -70.96 dB at a matching thickness of 3.60 mm, corresponding to an absorption of >99.99% of the incident energy. Both experimental results and theoretical calculations indicate that the synergistic effect of coupled Ni─Cu pairs DAs sites results in the transfer of electron-rich sites from the initial N sites to the Cu sites, which induces a strong asymmetric polarization loss by this redistribution of local charge and significantly improves the EMW absorption performance. This work not only provides a strategy for the preparation of high-density DA pairs but also demonstrates the role of coupled DA pairs in precisely tuning coordination symmetry at the atomic level.
Collapse
Affiliation(s)
- Hongsheng Liang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shengchong Hui
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi'an, 710072, P. R. China
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
10
|
Liu H, Jiang Y, Li Q, Hai G, Gu C, Du Y. Interface-Triggered Spin-Magnetic Effect in Rare Earth Intraparticle Heterostructured Nanoalloys for Boosting Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202412591. [PMID: 39219031 DOI: 10.1002/anie.202412591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rare earth (RE) elements are attractive for spin-magnetic modulation due to their unique 4 f electron configuration and strong orbital couplings. Alloying RE with conventional 3d transition-metal (TM) is promising for the fabrication of advanced spin catalysts yet remains much difficulties in preparation, which leads to the mysteries of spin-magnetic effect between RE and 3d TM on catalysis. Here we define a solid-phase synthetic protocol for creating RE-3d TM-noble metal integrated intraparticle heterostructured nanoalloys (IHAs) with distinct Gd and Co interface within the entire Rh framework, denoted as RhCo-RhGd IHAs. They exhibit interface-triggered antiferromagnetic interaction, which can induce electron redistribution and regulate spin polarization. Theoretical calculations further reveal that active sites around the heterointerface with weakened spin polarization optimize the adsorption and dissociation of H2O, thus promoting alkaline hydrogen evolution catalysis. The RhCo-RhGd IHAs show a small overpotential of 11.3 mV at 10 mA cm-2, as well as remarkable long-term stability, far superior to previously reported Rh-based catalysts.
Collapse
Affiliation(s)
- Hengjun Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Qingqing Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chao Gu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
11
|
Wang Y, Li S, Hou X, Cui T, Zhuang Z, Zhao Y, Wang H, Wei W, Xu M, Fu Q, Chen C, Wang D. Low-Spin Fe 3+ Evoked by Multiple Defects with Optimal Intermediate Adsorption Attaining Unparalleled Performance in Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412598. [PMID: 39543434 DOI: 10.1002/adma.202412598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Electrocatalytic water splitting is long constrained by the sluggish kinetics of anodic oxygen evolution reaction (OER), and rational spin-state manipulation holds great promise to break through this bottleneck. Low-spin Fe3+ (LS, t2g 5eg 0) species are identified as highly active sites for OER in theory, whereas it is still a formidable challenge to construct experimentally. Herein, a new strategy is demonstrated for the effective construction of LS Fe3+ in NiFe-layered double hydroxide (NiFe-LDH) by introducing multiple defects, which induce coordination unsaturation over Fe sites and thus enlarge their d orbital splitting energy. The as-obtained catalyst exhibits extraordinary OER performance with an ultra-low overpotential of 244 mV at the industrially required current density of 500 mA cm-2, which is 110 mV lower than that of the conventional NiFe-LDH with high-spin Fe3+ (HS, t2g 3eg 2) and superior to most previously reported NiFe-based catalysts. Comprehensive experimental and theoretical studies reveal that LS Fe3+ configuration effectively reduces the adsorption strength of the O* intermediate compared with that of the HS case, thereby altering the rate-determining step from (O* → OOH*) to (OH* → O*) of OER and lowering its reaction energy barrier. This work paves a new avenue for developing efficient spin-dependent electrocatalysts for OER and beyond.
Collapse
Affiliation(s)
- Yihao Wang
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shanqing Li
- Department of Materials and Environmental Engineering, Chizhou University, Chizhou, 247000, P. R. China
| | - Xu Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Tingting Cui
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunhe Zhao
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, The Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Xu
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Wu J, Kan E, Zhan C. A theoretical investigation on the OER and ORR activity of graphene-based TM-N 3 and TM-N 2X (X = B, C, O, P) single atom catalysts by density functional theory calculations. Phys Chem Chem Phys 2024; 26:28449-28458. [PMID: 39508484 DOI: 10.1039/d4cp03779k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Single-atom catalysts (SACs) have shown promising activity in electrocatalysis, such as CO2 reduction (CO2RR), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Transition-metal-embedded N-doped graphene (M-N-C) with TM-N4 active sites (where TM represents a transition metal) is a representative SAC family that has attracted the most attention in both experimental and theoretical studies. However, TM-N3 type M-N-C has received less attention than TM-N4, although some experimental studies have reported its excellent activity in OER and CO2RR. To fully explore the electrocatalytic activity of TM-N3 type M-N-C, in this work we systematically investigate the OER and ORR activity of TM-N3 (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu) and TM-N2X (X = B, C, O, P) using density functional theory (DFT) calculation. We examine the formation energies, OER/ORR free energy diagrams, overpotentials, charge density, d-band center and electronic structure of each candidate. Our computational screening shows that CuN3 is a promising bifunctional electrocatalyst for both OER and ORR with low overpotentials of 0.31 V (OER) and 0.44 V (ORR), while CrN3 and CuN2B are predicted to be promising OER catalysts, with overpotentials of 0.26 V and 0.50 V, respectively. A volcano plot derived from the scaling relationships suggests that substituting one nitrogen atom with a hetero atom significantly affects the potential-limiting step in OER/ORR, leading to worse activity in most cases. Density of states and d-band center analyses indicate that the change in OER/ORR activity is strongly correlated with the binding strength of *OH, which is dominated by the location of the d-band center. Our simulation results introduce a comprehensive insight into the activity of the TM-N3 site in TM-N-C, which could benefit the further development of graphene-based SACs for fuel cells and renewable energy applications.
Collapse
Affiliation(s)
- Jiaxiang Wu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China.
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
- Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing 210094, China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China.
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
- Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing 210094, China
| | - Cheng Zhan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China.
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
- Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing 210094, China
| |
Collapse
|
13
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Feng Z, Liu C, Li X, Luo G, Zhai N, Hu R, Lin J, Peng J, Peng Y, Che R. Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption. NANO-MICRO LETTERS 2024; 17:20. [PMID: 39325236 PMCID: PMC11448510 DOI: 10.1007/s40820-024-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption (EMWA) materials. However, the relationship between configuration and electromagnetic (EM) loss mechanism has remained elusive. Herein, drawing inspiration from the DNA transcription process, we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability. Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn-N4-C configuration, along with cross polarization generated by the helical structure, endow the helical converters with enhanced EM loss. As a result, HMC-8 demonstrates outstanding EMWA performance, achieving a minimum reflection loss of -63.13 dB at an ultralow thickness of 1.29 mm. Through precise tuning of the graphite domain size, HMC-7 achieves an effective absorption bandwidth (EAB) of 6.08 GHz at 2.02 mm thickness. Furthermore, constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm, with the maximum radar cross section reduction value reaching 36.4 dB m2. This innovative approach not only advances the understanding of metal-nonmetal co-doping but also realizes broadband EMWA, thus contributing to the development of EMWA mechanisms and applications.
Collapse
Affiliation(s)
- Zhaobo Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Chongbo Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Xin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Guangsheng Luo
- School of Physics and Materials, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Naixin Zhai
- School of Physics and Materials, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Ruizhe Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Jing Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Jinbin Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Yuhui Peng
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
15
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
16
|
Wang Q, Gong Y, Zi X, Gan L, Pensa E, Liu Y, Xiao Y, Li H, Liu K, Fu J, Liu J, Stefancu A, Cai C, Chen S, Zhang S, Lu YR, Chan TS, Ma C, Cao X, Cortés E, Liu M. Coupling Nano and Atomic Electric Field Confinement for Robust Alkaline Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405438. [PMID: 38682249 DOI: 10.1002/anie.202405438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.
Collapse
Affiliation(s)
- Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Yujie Gong
- Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province, School of Electrical Engineering, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Lei Gan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Yuxiang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Yusen Xiao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Jun Liu
- Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province, School of Electrical Engineering, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Andrei Stefancu
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Chao Cai
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Shanyong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, 300092, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300092, Hsinchu, Taiwan
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xueying Cao
- College of Materials Science and Engineering, Linyi University, Linyi, 276000, Shandong, P.R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
17
|
Liu M, Zhang J, Peng Y, Guan S. Synergistic dual sites of Zn-Mg on hierarchical porous carbon as an advanced oxygen reduction electrocatalyst for Zn-air batteries. Dalton Trans 2024; 53:8940-8947. [PMID: 38722024 DOI: 10.1039/d4dt00152d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The development of cost-effective and high-performance non-noble metal catalysts for the oxygen reduction reaction (ORR) holds substantial promise for real-world applications. Introducing a secondary metal to design bimetallic sites enables effective modulation of a metal-nitrogen-carbon (M-N-C) catalyst's electronic structure, providing new opportunities for enhancing ORR activity and stability. Here, we successfully synthesized an innovative hierarchical porous carbon material with dual sites of Zn and Mg (Zn/Mg-N-C) using polymeric ionic liquids (PILs) as precursors and SBA-15 as a template through a bottom-up approach. The hierarchical porous structure and optimized Zn-Mg bimetallic catalytic centers enable Zn/Mg-N-C to exhibit a half-wave potential of 0.89 V, excellent stability, and good methanol tolerance in 0.1 M KOH solution. Theoretical calculations indicated that the Zn-Mg bimetallic sites in Zn/Mg-N-C effectively lowered the ORR energy barrier. Furthermore, the Zn-air batteries assembled based on Zn/Mg-N-C demonstrated an outstanding peak power density (298.7 mW cm-2) and superior cycling stability. This work provides a method for designing and synthesizing bimetallic site catalysts for advanced catalysis.
Collapse
Affiliation(s)
- Mincong Liu
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Jing Zhang
- College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Yan Peng
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Shiyou Guan
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| |
Collapse
|
18
|
Zhang Y, Chen ZW, Liu X, Wen Z, Singh CV, Yang CC, Jiang Q. Vacancy-Enhanced Sb-N 4 Sites for the Oxygen Reduction Reaction and Zn-Air Battery. NANO LETTERS 2024; 24:4291-4299. [PMID: 38551180 DOI: 10.1021/acs.nanolett.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advantages of a Fenton-inactive characteristic and unique p electrons that can hybridize with O2 molecules, p-block metal-based single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) have tremendous potential. Nevertheless, their undesirable intrinsic activity caused by the closed d10 electronic configuration remains a major challenge. Herein, an Sb-based SAC featuring carbon vacancy-enhanced Sb-N4 active centers, corroborated by the results of high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure, has been developed for an incredibly effective ORR. The obtained SbSA-N-C demonstrates a positive half-wave potential of 0.905 V and excellent structural stability in alkaline environments. Density functional theory calculations reveal that the carbon vacancies weaken the adsorption between Sb atoms and the OH* intermediate, thus promoting the ORR performance. Practically, the SbSA-N-C-based Zn-air batteries achieve impressive outcomes, such as a high power density of 181 mW cm-2, showing great potential in real-world applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhi-Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Xu Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|