1
|
Antony E, Narmatha G, Kavanya S, Prabakaran G, Prabhu J, Almansour AI, Kumar RS, Nandhakumar R. A Dual-Functional Fluorescent Chemosensor Derived from Naphthalene Dithiouryl for Cu 2+: Applications in Water Analysis, Logic Gates, Swab Tests, and Pesticide Monitoring. J Fluoresc 2025:10.1007/s10895-025-04181-6. [PMID: 39921693 DOI: 10.1007/s10895-025-04181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
A chemosensor (CNS) built on a naphthalene fluorophore was developed, featuring a disulfide-bridged dimer structure. The probe CNS was completely characterized by the usual spectral analysis methods like 1H NMR, 13C NMR, and HR-MS. The CNS probe selectively detects Cu2+ ions and subsequently recognizes the amino acid tryptophan in a semi-aqueous medium of DMF:H2O solution. The detection of Cu2+ ions occur via three distinct mechanisms: suppression of the photoinduced electron-transfer process (PET), arrested rotation of diuryl groups leading to conformational change, and a blue-shifted fluorescence enhancement through intramolecular charge-transfer (ICT). With a 1:1 complexation ratio and a detection limit of 2.14 x 10-4 M, the CNS probe has been successfully applied in various practical scenarios, including real water sample analysis, glyphosate detection, smartphone-based color detection, and Cu2+ ion testing using a cotton-swab method.
Collapse
Affiliation(s)
- Elizabeth Antony
- Fluorensic Materials Lab, Division of Physical Sciences, Karunya Institute of Technology and Sciences, Deemed-to-be University, Karunya Nagar, Coimbatore, 641114, India
| | - G Narmatha
- Fluorensic Materials Lab, Division of Physical Sciences, Karunya Institute of Technology and Sciences, Deemed-to-be University, Karunya Nagar, Coimbatore, 641114, India
| | - S Kavanya
- Fluorensic Materials Lab, Division of Physical Sciences, Karunya Institute of Technology and Sciences, Deemed-to-be University, Karunya Nagar, Coimbatore, 641114, India
| | - G Prabakaran
- Fluorensic Materials Lab, Division of Physical Sciences, Karunya Institute of Technology and Sciences, Deemed-to-be University, Karunya Nagar, Coimbatore, 641114, India
| | - J Prabhu
- Fluorensic Materials Lab, Division of Physical Sciences, Karunya Institute of Technology and Sciences, Deemed-to-be University, Karunya Nagar, Coimbatore, 641114, India
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - R Nandhakumar
- Fluorensic Materials Lab, Division of Physical Sciences, Karunya Institute of Technology and Sciences, Deemed-to-be University, Karunya Nagar, Coimbatore, 641114, India.
| |
Collapse
|
2
|
Shalini C, Dharmaraj N, Bhuvanesh NSP, Kaveri MV. Palladium(II) Pincer Type Complexes Containing ONO Donor Heterocyclic Hydrazones: Synthesis, Structure and Catalytic Activity Towards the Suzuki–Miyaura Cross-Coupling of 3-Bromochromone and Arylboronic Acids via C–Br Activation. Catal Letters 2023. [DOI: 10.1007/s10562-023-04276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Parvarinezhad S, Salehi M, Kubicki M, Eshaghi Malekshah R. Experimental and theoretical studies of new Co(III) complexes of hydrazide derivatives proposed as multi-target inhibitors of SARS-CoV-2. Appl Organomet Chem 2022; 36:e6836. [PMID: 35945928 PMCID: PMC9353290 DOI: 10.1002/aoc.6836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
Cobalt(III) complexes with Schiff base ligands derived from hydrazone, (HL 1 = (E)-N'-(3,5-dichloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide, HL 2 = (E)-N'-(3,5-dichloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide (3,5-dibromo-2-hydroxybenzylidene), and HL 3 = (E)-4-hydroxy-N'-(2-hydroxy-3-ethoxybenzylidene)benzohydrazide), were synthesized and characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, and cyclic voltammetry. X-ray diffraction was used to determine the single crystal structure of the complex (1). Co(III) was formed in a distorted, very regular octahedral coordination in this complex; three pyridine moieties complete this geometry. Schiff base complexes' redox behaviors are represented by irreversible (1), quasi-reversible (2), and quasi-reversible (3) voltammograms. A density functional theory (DFT)/B3LYP method was used to optimize cobalt complexes with a base set of 6-311G. Furthermore, fragments occupying the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were investigated at the same theoretical level. Quantum theory of atoms in molecules (QTAIM) computations were also done to study the coordination bonds and non-covalent interactions in the investigated structures. Hirshfeld surface analysis was used to investigate the nature and types of intermolecular exchanges in the crystal structure of the complex (1). The capacity of cobalt complexes to bind to the major protease SARS-CoV-2 and the molecular targets of human angiotensin-converting enzyme-2 (ACE-2) was investigated using molecular docking. The molecular simulation methods used to assess the probable binding states of cobalt complexes revealed that all three complexes were stabilized in the active envelope of the enzyme by making distinct interactions with critical amino acid residues. Interestingly, compound (2) performed better with both molecular targets and the total energy of the system than the other complexes.
Collapse
Affiliation(s)
| | - Mehdi Salehi
- Department of Chemistry, Faculty of ScienceSemnan UniversitySemnanIran
| | - Maciej Kubicki
- Department of ChemistryAdam Mickiewicz UniversityPoznanPoland
| | | |
Collapse
|
4
|
Shalini C, Dharmaraj N, Bhuvanesh NS, Kaveri M. Suzuki Miyaura cross-coupling of 2-chloropyrazine with arylboronic acids catalyzed by novel palladium(II) ONO pincer complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Shahabadi N, Ghaffari L, Mardani Z, Shiri F. Experimental and Molecular Docking Studies on the Interaction of a Water-Soluble Pd(II) Complex Containing β-Amino Alcohol with Calf Thymus DNA. Biol Trace Elem Res 2022; 200:1988-2000. [PMID: 34218426 DOI: 10.1007/s12011-021-02803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
The interaction of water-soluble and fluorescent [Pd (HEAC) Cl2] complex, in which HEAC is 2-((2-((2-hydroxyethyl)amino)ethyl)amino) cyclohexanol, with calf thymus DNA (ct-DNA) has been studied. This study was performed using electronic absorption and fluorescence emission spectroscopies, cyclic voltammetry and circular dichroism analyses, dynamic viscosity measurements, and molecular docking theory. From hypochromic effect observed in ct-DNA absorption spectra, it was found that the Pd(II) complex could form a conjugate with ct-DNA strands through the groove binding mode. The Kb values obtained from fluorescence measurements clearly assert the Pd(II) complex affinity to ct-DNA. The fluorescence quenching of the DNA-Hoechst compound following the successive additions of the Pd(II) complex to the solution revealed that the Pd(II) complex is located in the ct-DNA grooves, and Hoechst molecules have been released into solution; moreover, the resulting measurements from relative viscosity authenticate the Pd(II) complex binding to the grooves. Negative quantities of thermodynamic parameters imply that the Pd(II) complex binds to ct-DNA mainly by the hydrogen bonds and van der Waals forces; also, the Gibbs-free energy changes show the exothermic and spontaneous formation of the Pd(II) complex-DNA system. The electrochemical behavior of the Pd(II) complex in the attendance of ct-DNA was investigated using the cyclic voltammetry method (CV). Several quasi-reversible redox waves were observed along with increasing the anodic/cathodic peak currents, as well as a shift in anodic/cathodic peak potentials. Circular dichroism (CD) observations suggested that the Pd(II)-DNA interaction could alter ct-DNA conformation. The results of molecular modeling confirmed that groove mechanism is followed by the Pd(II) complex to interact with ct-DNA.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
- Center of Medical Biology Research (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Hyeraci M, Agnarelli L, Labella L, Marchetti F, Di Paolo ML, Samaritani S, Dalla Via L. trans-Dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) Complexes: In Search of New Scaffolds to Circumvent Cisplatin Resistance. Molecules 2022; 27:molecules27030644. [PMID: 35163916 PMCID: PMC8838190 DOI: 10.3390/molecules27030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
The high incidence of the resistance phenomenon represents one of the most important limitations to the clinical usefulness of cisplatin as an anticancer drug. Notwithstanding the considerable efforts to solve this problem, the circumvention of cisplatin resistance remains a challenge in the treatment of cancer. In this work, the synthesis and characterization of two trans-dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) complexes (1 and 2) were described. The trypan blue exclusion assay demonstrated an interesting antiproliferative effect for complex 1 in ovarian carcinoma-resistant cells, A2780cis. Quantitative analysis performed by ICP-AES demonstrated a scarce ability to platinate DNA, and a significant intracellular accumulation. The investigation of the mechanism of action highlighted the ability of 1 to inhibit the relaxation of supercoiled plasmid DNA mediated by topoisomerase II and to stabilize the cleavable complex. Cytofluorimetric analyses indicated the activation of the apoptotic pathway and the mitochondrial membrane depolarization. Therefore, topoisomerase II and mitochondria could represent possible intracellular targets. The biological properties of 1 and 2 were compared to those of the related trans-dichloro(triphenylphosphino)(N,N-dialkylamino)platinum(II) complexes in order to draw structure–activity relationships useful to face the resistance phenotype.
Collapse
Affiliation(s)
- Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Laura Agnarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
| | - Luca Labella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
- CISUP—Center for the Integration of Scientific Instruments, University of Pisa, 56126 Pisa, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, Università degli Studi di Padova, Via G. Colombo 3, 35131 Padova, Italy;
| | - Simona Samaritani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
- CISUP—Center for the Integration of Scientific Instruments, University of Pisa, 56126 Pisa, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
- Correspondence: ; Tel.: +39-049-8275712
| |
Collapse
|
7
|
Patel NJ, Bhatt BS, Vekariya PA, Vaidya FU, Pathak C, Pandya J, Patel MN. Synthesis, characterization, structural-activity relationship and biomolecular interaction studies of heteroleptic Pd(II) complexes with acetyl pyridine scaffold. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Heteroleptic N,N-donor pyrazole based Pt(II) and Pd(II) complexes: DNA binding, molecular docking and cytotoxicity studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Vignesh A, Shalini C, Dharmaraj N, Kaminsky W, Karvembu R. Delineating the Role of Substituents on the Coordination Behavior of Aroylhydrazone Ligands in Pd
II
Complexes and their Influence on Suzuki–Miyaura Coupling in Aqueous Media. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Arumugam Vignesh
- Department of Chemistry National Institute of Technology 620015 Tiruchirapalli – India
- Inorganic & Nanomaterials Research Laboratory Department of Chemistry Bharathiar University Coimbatore – 641 046 India
| | - Chinnuswamy Shalini
- Inorganic & Nanomaterials Research Laboratory Department of Chemistry Bharathiar University Coimbatore – 641 046 India
| | - Nallasamy Dharmaraj
- Inorganic & Nanomaterials Research Laboratory Department of Chemistry Bharathiar University Coimbatore – 641 046 India
| | - Werner Kaminsky
- Department of Chemistry Department of Chemistry University of Washington 98195 Seattle Washington USA
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology 620015 Tiruchirapalli – India
| |
Collapse
|
10
|
Tikhomirova AA, Tcyrulnikov NA, Wilson RM. Synthesis, characterization, DNA binding and cleaving properties of photochemically activated phenanthrene dihydrodioxin. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|