1
|
Emad-Abbas N, Naji J, Moradi P, Kikhavani T. 3-(Sulfamic acid)-propyltriethoxysilane on biochar nanoparticles as a practical, biocompatible, recyclable and chemoselective nanocatalyst in organic reactions. RSC Adv 2024; 14:22147-22158. [PMID: 39005254 PMCID: PMC11240877 DOI: 10.1039/d4ra02265c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Recyclable and inexpensive catalysts, waste regeneration, use of available and safe solvents are important principles of green chemistry. Therefore, in this project, biochar nanoparticles (BNPs) were synthesized by the pyrolysis method from chicken manure. Then, 3-(sulfamic acid)-propyltriethoxysilane (SAPES) was immobilized on the surface of BNPs (SAPES@BNPs). The prepared catalyst (SAPES@BNPs) was used as a commercial, practical, biocompatible and reusable catalyst in the selective oxidation of sulfides to sulfoxides. Further, the catalytic application of SAPES@BNPs was explored in the multicomponent synthesis of tetrahydrobenzo[b]pyrans under mild and green conditions. BNPs were characterized using SEM, TGA and XRD techniques. SAPES@BNPs were characterized using SEM, FT-IR spectroscopy, WDX, EDS, TGA, and XRD techniques. Particle size distribution was obtained by histogram graph. SAPES@BNPs can be recovered and reused several times. The purity of the products was studied using NMR spectroscopy.
Collapse
Affiliation(s)
| | - Jalil Naji
- Department of Physics, Faculty of Science, Ilam University Ilam Iran
| | - Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| |
Collapse
|
2
|
Ali AT, Guda MA, Oraibi AI, Salih IK, Shather AH, Abd Ali AT, Azzawi AL, Almashhadani HA. Fe 3O 4 supported [Cu(ii)(met)(pro-H) 2] complex as a novel nanomagnetic catalytic system for room temperature C-O coupling reactions. RSC Adv 2023; 13:22538-22548. [PMID: 37497095 PMCID: PMC10367590 DOI: 10.1039/d3ra03509c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
In this study, a newly-designed copper(ii) complex of metformin and l-proline which was immobilized on Fe3O4 MNPs was developed. The structure of the catalyst platform was fully characterized using spectroscopic analyses. Moreover, the catalytic activity of [Fe3O4@Cu(ii)(Met)(Pro-H)2] was investigated in a one-pot synthesis of a variety of functionalized ethers in reasonable to excellent yields through Ullman reaction in an aqueous environment using various aryl halides, phenol, and Cs2CO3 and without using any external Cu-reducing agents. Notably, gentle catalytic conditions, quick reaction times, applicability, low cost, and preventing dangerous chemicals and solvents during synthesis and catalytic application are some of the superior properties of the [Fe3O4@Cu(ii)(Met)(Pro-H)2] complex. Furthermore, the catalyst can be reused for several runs (at least eight times) without remarkable loss in efficiency.
Collapse
Affiliation(s)
- Ahmed Talal Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah Iraq
| | - Muthik A Guda
- Department of Ecology Science, College of Science, Kufa University Iraq
| | - Amjad I Oraibi
- Department of Pharmacy, Al-Manara College for Medical Sciences Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College 51001 Hilla Babylon Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University Altun Kopru Kirkuk 00964 Iraq
| | - Abbas Talib Abd Ali
- Department of Medical Laboratories Technology, National University of Science and Technology Dhi Qar Iraq
| | | | | |
Collapse
|
3
|
Moradi P, Kikhavani T, Abbasi Tyula Y. A new samarium complex of 1,3-bis(pyridin-3-ylmethyl)thiourea on boehmite nanoparticles as a practical and recyclable nanocatalyst for the selective synthesis of tetrazoles. Sci Rep 2023; 13:5902. [PMID: 37041186 PMCID: PMC10090185 DOI: 10.1038/s41598-023-33109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Boehmite is a natural and environmentally friendly compound. Herein boehmite nanoparticles were primarily synthesized and, then, their surface were modified via 3-choloropropyltrimtoxysilane (CPTMS). Afterwards, a new samarium complex was stabilized on the surface of the modified boehmite nanoparticles (Sm-bis(PYT)@boehmite). The obtained nanoparticles were characterized using thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), wavelength dispersive X-ray spectroscopy (WDX), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and X-ray diffraction (XRD) pattern. Sm-bis(PYT)@boehmite was used as an environmentally friendly, efficient, and organic-inorganic hybrid nanocatalyst in the homoselective synthesis of tetrazoles in polyethylene glycol 400 (PEG-400) as a green solvent. Notably, Sm-bis(PYT)@boehmite is stable and has a heterogeneous nature. Thus, it can be reused for several runs without any re-activation.
Collapse
Affiliation(s)
- Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University, Ilam, Iran.
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran
| |
Collapse
|
4
|
Efficient Construction of Symmetrical Diaryl Sulfides via a Supported Pd Nanocatalyst-Catalyzed C-S Coupling Reaction. Int J Mol Sci 2022; 23:ijms232315360. [PMID: 36499687 PMCID: PMC9738011 DOI: 10.3390/ijms232315360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aryl sulfides play an important role in pharmaceuticals, biologically active molecules and polymeric materials. Herein, a general and efficient protocol for Pd@COF-TB (a kind of Pd nanocatalyst supported by a covalent organic framework)/DIPEA-catalyzed one-pot synthesis of symmetrical diaryl sulfides through a C-S coupling reaction from aryl iodides and Na2S2O3 is developed. More importantly, the addition of N,N-diisopropylethylamine (DIPEA) can not only enhance the catalytic activity of a Pd@COF-TB nanocatalyst, but also effectively inhibit the formation of biphenyl byproducts, which are a product of Ullmann reaction. Besides, it has been confirmed that the aryl Bunte salts generated in situ from Na2S2O3 and aryl iodides are the sulfur sources involved in this C-S coupling reaction. With the strategy proposed in this work, a variety of symmetrical diaryl sulfides could be obtained in moderate to excellent yields with a high tolerance of various functional groups. Moreover, a possible mechanism of this Pd nanoparticle-catalyzed C-S coupling reaction is proposed based on the results of controlling experiments.
Collapse
|
5
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
6
|
Mohammadi M, Khodamorady M, Tahmasbi B, Bahrami K, Ghorbani-Choghamarani A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Khodamorady M, Bahrami K. Design, Synthesis, Characterization and Application of BNPs@SiO2(CH2)3NH-CC-AMP-Pd (0) as a New Reusable Nano-Catalyst for Suzuki and Heck Cross-Coupling Reactions. Catal Letters 2019. [DOI: 10.1007/s10562-019-03054-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ashraf MA, Liu Z, Peng W. Trisaminomethane–cobalt complex supported on Fe
3
O
4
magnetic nanoparticles as an efficient recoverable nanocatalyst for oxidation of sulfides and C–S coupling reactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of ForestryHenan Agricultural University Zhengzhou 450002 China
- Department of Geology Faculty of ScienceUniversity of Malaya 50603 Kuala Lumpur Malaysia
| | - Zhenling Liu
- School of ManagementHenan University of Technology Zhengzhou 450001 China
| | - Wan‐Xi Peng
- School of ForestryHenan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
9
|
Ashraf MA, Liu Z, Peng WX, Zhou L. Glycerol Cu(II) Complex Supported on Fe3O4 Magnetic Nanoparticles: A New and Highly Efficient Reusable Catalyst for the Formation of Aryl-Sulfur and Aryl-Oxygen Bonds. Catal Letters 2019. [DOI: 10.1007/s10562-019-02973-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Ghorbani‐Choghamarani A, Heidarnezhad Z, Tahmasbi B. New Complex of Copper on Boehmite Nanoparticles as Highly Efficient and Reusable Nanocatalyst for Synthesis of Sulfides and Ethers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Zahra Heidarnezhad
- Department of ChemistryFaculty of ScienceIlam University, P.O. Box 69315516 Ilam Iran
| | - Bahman Tahmasbi
- Department of ChemistryFaculty of ScienceIlam University, P.O. Box 69315516 Ilam Iran
| |
Collapse
|
11
|
Ni-guanidine@MCM-41 NPs: a new catalyst for the synthesis of 4,4ʹ-(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols) and symmetric di-aryl sulfides. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01727-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Radfar I, Kazemi Miraki M, Esfandiary N, Ghandi L, Heydari A. Fe3
O4
@SiO2
-copper sucrose xanthate as a green nanocatalyst for N-, O- and S-arylation. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Iman Radfar
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | | | - Naghmeh Esfandiary
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | - Leila Ghandi
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | - Akbar Heydari
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| |
Collapse
|