1
|
Recent Strategies in Transition-Metal-Catalyzed Sequential C–H Activation/Annulation for One-Step Construction of Functionalized Indazole Derivatives. Molecules 2022; 27:molecules27154942. [PMID: 35956893 PMCID: PMC9370621 DOI: 10.3390/molecules27154942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Designing new synthetic strategies for indazoles is a prominent topic in contemporary research. The transition-metal-catalyzed C–H activation/annulation sequence has arisen as a favorable tool to construct functionalized indazole derivatives with improved tolerance in medicinal applications, functional flexibility, and structural complexity. In the current review article, we aim to outline and summarize the most common synthetic protocols to use in the synthesis of target indazoles via a transition-metal-catalyzed C–H activation/annulation sequence for the one-step synthesis of functionalized indazole derivatives. We categorized the text according to the metal salts used in the reactions. Some metal salts were used as catalysts, and others may have been used as oxidants and/or for the activation of precatalysts. The roles of some metal salts in the corresponding reaction mechanisms have not been identified. It can be expected that the current synopsis will provide accessible practical guidance to colleagues interested in the subject.
Collapse
|
2
|
Salem MA, Gouda MA, El-Bana GG. Chemistry of 2-(Piperazin-1-yl) Quinoline-3-Carbaldehydes. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666211001124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
This review described the preparation of 2- chloroquinoline-3-carbaldehyde derivatives 18
through Vilsmeier-Haack formylation of N-arylacetamides and the use of them as a key intermediate
for the preparation of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. The synthesis of the 2-
(piperazin-1-yl) quinolines derivatives was explained through the following chemical reactions:
acylation, sulfonylation, Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot
multicomponent reactions (MCRs), reductive amination, Grignard reaction and Kabachnik-Field’s
reaction.
Collapse
Affiliation(s)
- Mohammed A. Salem
- Department of Chemistry, Faculty of Arts and Science, Mohail Asir, King Khalid University, Rafha, Saudia Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Ghada G. El-Bana
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
- Laboratory Department, Mansoura University Student Hospital, Mansoura University, El-Gomhoria Street, Mansoura ET- 35516, Egypt
| |
Collapse
|
3
|
Abstract
Nitrogen-containing heterocycles are important scaffolds for a large number of compounds with biological, pharmaceutical, industrial and optoelectronic applications. A wide range of different methodologies for the preparation of N-heterocycles are based on metal-catalyzed cyclization of suitable substrates. Due to the growing interest in Green Chemistry criteria over the past two decades, the use of supported metal catalysts in the preparation of N-heterocycles has become a central topic in Organic Chemistry. Here we will give a critical overview of all the solid supported metal catalysts applied in the synthesis of N-heterocycles, following a systematic approach as a function of the type of support: (i) metal catalysts supported on inorganic matrices; (ii) metal catalysts supported on organic matrices; (iii) metal catalysts supported on hybrid inorganic-organic matrices. In particular, we will try to emphasize the effective heterogeneity and recyclability of the described metal catalysts, specifying which studies were carried out in order to evaluate these aspects.
Collapse
|
4
|
Rezvanian A, Kuhzadeh P, Roosta A. Synthesis of Novel 1,3‐Cyclohexadiene Derivatives Bearing 2‐Oxo‐Quinoline Moiety
via
a 4‐CR Strategy**. ChemistrySelect 2021. [DOI: 10.1002/slct.202103240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Atieh Rezvanian
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | - Parisa Kuhzadeh
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | - Atefeh Roosta
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University Tehran Iran
| |
Collapse
|
5
|
Sharghi H, Mashhadi E, Aberi M, Aboonajmi J. Synthesis of novel benzimidazoles and benzothiazoles via furan‐2‐carboxaldehydes,
o
‐phenylenediamines, and 2‐aminothiophenol using Cu(II) Schiff‐base@SiO
2
as a nanocatalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Elahe Mashhadi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Mahdi Aberi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| |
Collapse
|
6
|
Shiri P. Novel Hybrid Molecules Based on triazole-β-lactam as Potential Biological Agents. Mini Rev Med Chem 2021; 21:536-553. [PMID: 33109046 DOI: 10.2174/1389557520666201027160436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
Triazole ring is a cyclic scaffold containing three heteroatoms of nitrogen. They display a broad variety of biological activities. The uncatalyzed/catalyzed 1,3-dipolar cycloadditions are a chemical reaction between a 1,3-dipole and a dipolarophile to achieve 1,2,3-triazoles. The hybrid approach is an innovative and powerful synthetic tool for the synthesis of two or more distinct entities in one molecule with novel biological activities. Owing to the high potential of β-lactams to display noticeable biological properties, these compounds have been one of the important ingredients in hybrid molecules. The four-membered lactams have been recognized as a part of penicillin. There are various synthetic protocols for the synthesis of β-lactams. Staudinger reaction of the Schiff bases with diphenylketenes is a successful and famous strategy for the synthesis of these products. Even though, the number of heterocyclic compounds is limited, plenty of hybrids based on heterocyclic compounds can be designed and prepared. The synthesis of hybrid products of triazole-β-lactam has proved to be highly challenging. The current review article outlines the diversity and creativity in the elegant synthesis of triazole-β-lactam hybrids as potential biological agents. Molecules including isatin, ferrocene, bile acid, chalcone, and etc were attached to β-lactam with triazole linker, as well.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Shiri P, Amani AM, Mayer-Gall T. A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J Org Chem 2021; 17:1600-1628. [PMID: 34354770 PMCID: PMC8290111 DOI: 10.3762/bjoc.17.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse strategies for the efficient and attractive synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and industry. The current review aims to cover a wide literature survey of numerous synthetic strategies. Recent reports (2017–2021) in the field of 1,4,5-trisubstituted 1,2,3-triazoles are emphasized in this current review.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas Mayer-Gall
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.,Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
| |
Collapse
|
8
|
Mamedov VA, Zhukova NA. Recent Developments Towards Synthesis of (Het)arylbenzimidazoles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractBenzimidazole is an important heterocycle that is widely researched and utilized by the pharmaceutical industry and is one of the five most commonly used five-membered aromatic heterocyclic compounds approved by the US Food and Drug Administration. In view of their wide-ranging bioactivities, systems containing benzimidazole as one of the moieties occupy a special place among other benzimidazole derivatives. Since 2010, many improved synthetic strategies have been developed for the construction of hetaryl- and arylbenzimidazole molecular scaffolds under environmentally benign conditions. This review emphasizes the recent trends and modifications frequently used in the synthesis of derivatives of benzimidazole such as the Phillips–Ladenburg and Weidenhagen reactions, as well as entirely new methods of synthesis, involving oxidative cyclization, cross-coupling, ring distortion strategy, and rearrangements carried out under environmentally benign conditions.1 Introduction2 From 1,2-Diaminobenzenes with Various One-Carbon Unit Suppliers2.1 Phillips–Ladenburg Reaction2.1.1 With (Het)arenecarboxylic Acids2.2.2 With (Het)arenecarboxylic Acid Derivatives2.2 Weidenhagen Reaction2.2.1 With (Het)arenecarbaldehydes or (Het)aryl Methyl Ketones2.2.2 With Primary Alcohols2.2.3 With Primary Alkylamines2.2.4 With 2-Methylazaarenes2.2.5 With Other One-Carbon Fragment Suppliers3 From 2-Haloacetanilides and Amines4 From Amidines5 From Tetrahydroquinazolines6 Mamedov Rearrangement7 Conclusions and Outlook
Collapse
|
9
|
Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2
H
‐Indazoles and 5‐Substituted 1
H
‐Tetrazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202004387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dariush Khalili
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| | - Roya Evazi
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| | - Abdollah Neshat
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| |
Collapse
|
10
|
Abstract
Imines, versatile intermediates for organic synthesis, can be exploited for the
preparation of diverse classes of biologically active benzazoles. Because of the special
characteristics of the C=N bond, imines can be simultaneously used in the synthesis of
1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of
novel cascade reactions for benzazole synthesis have been reported in the last decade.
Therefore, there is a strong need to elucidate the recent progress in the formation of various
classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles,
and benzisoxazoles, via imines obtained by condensation reactions or oxidative/
redox coupling reactions In this review, we provide a comprehensive survey of this
area. In particular, various green and mild synthetic methodologies are summarized, and
the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in
detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing
the benzazole motif via imines.
Collapse
Affiliation(s)
- Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingbo Zang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
11
|
Aboonajmi J, Sharghi H, Aberi M, Shiri P. Consecutive Oxidation/Condensation/Cyclization/Aromatization Sequences Catalyzed by Nanostructured Iron(III)‐Porphyrin Complex towards Benzoxazole Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Hashem Sharghi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Pezhman Shiri
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| |
Collapse
|
12
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
13
|
Shiri P. An overview on the copper‐promoted synthesis of five‐membered heterocyclic systems. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pezhman Shiri
- Department of ChemistryShiraz University Shiraz Iran
| |
Collapse
|
14
|
Shiri P, Aboonajmi J. A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in "click" reactions. Beilstein J Org Chem 2020; 16:551-586. [PMID: 32280385 PMCID: PMC7136568 DOI: 10.3762/bjoc.16.52] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, many inorganic silica/carbon-based and magnetic materials have been selected to arrest copper ions through a widespread range of anchoring and embedding methodologies. These inorganic supported nanocatalysts have been found to be efficient, environmentally friendly, recyclable, and durable. In addition, one of the vital issues for expanding new, stable, and reusable catalysts is the discovery of unique catalysts. The basis and foundation of this review article is to consider the recently published developments (2014-2019) in the synthesis and catalytic applications of copper supported by silica nanocomposites, carbon nanocomposites, and magnetic nanocomposites for expanding the "click" chemistry.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
15
|
Synthesis, characterization and application of a novel nanorod-structured organic–inorganic hybrid material as an efficient catalyst for the preparation of aminouracil derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04104-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Usui K, Miyashita K, Maeda K, Manaka Y, Chun WJ, Inazu K, Motokura K. Multifunctional Catalytic Surface Design for Concerted Acceleration of One-Pot Hydrosilylation-CO 2 Cycloaddition. Org Lett 2019; 21:9372-9376. [PMID: 31741391 DOI: 10.1021/acs.orglett.9b03602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Silica-supported Rh-ammonium iodide catalyst showed high performance for hydrosilylation-CO2 cycloaddition reaction sequences. The catalyst was prepared by surface grafting of Rh and the silane-coupling reaction of the ammonium iodide moiety. The acceleration of each catalytic reaction was realized due to the concerted catalysis between Rh species, immobilized organic functions, and surface Si-OH groups. As a result, good to excellent yields of silyl carbonates were obtained from epoxyolefins, hydrosilanes, and CO2 under mild reaction conditions.
Collapse
Affiliation(s)
- Kei Usui
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan
| | - Kodai Miyashita
- Department of Chemistry and Biochemistry , National Institute of Technology, Numazu College , Numazu 410-8501 , Japan
| | - Kyogo Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan.,Renewable Energy Research Center , National Institute of Advanced Industrial Science and Technology , Fukushima 963-0298 , Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences , International Christian University , Mitaka , Tokyo 181-8585 , Japan
| | - Koji Inazu
- Department of Chemistry and Biochemistry , National Institute of Technology, Numazu College , Numazu 410-8501 , Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan.,PRESTO , Japan Science and Technology Agency (JST) , Saitama 332-0012 , Japan
| |
Collapse
|
17
|
Sharghi H, Saei AA, Aberi M. N‐Arylation of Nitrogen‐Containing Heterocycles with Cu(II) Complex of 4‐(2,2′:6′,2“‐Terpyridin‐4′‐yl)toluene as a Versatile and Efficient Catalyst. ChemistrySelect 2019. [DOI: 10.1002/slct.201903075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hashem Sharghi
- DepartmentofChemistr,Collegeof SciencesShirazUniversity Shiraz 71454 Iran
| | - Ali Akbari Saei
- DepartmentofChemistr,Collegeof SciencesShirazUniversity Shiraz 71454 Iran
| | - Mahdi Aberi
- Department of Chemical and Materials EngineeringFaculty of ShahidRajaee, Shiraz BranchTechnical and Vocational University (TVU), Shiraz Iran
| |
Collapse
|