1
|
Sheraz N, Shah A, Shah SS. Nanosensor for the detection of bromothymol blue dye and its removal from wastewater by sustainable methods. RSC Adv 2025; 15:4203-4219. [PMID: 39926240 PMCID: PMC11803445 DOI: 10.1039/d4ra08296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
This study introduces the environmentally friendly synthesis of Ag2O, TiO2, and Ni-doped SnO2 nanoparticles (NPs) and their application in detecting and removing bromothymol blue (BTB) dye from wastewater. The unique electronic properties and quantum size effects of NPs allow them to surpass conventional materials. Characterization of the synthesized nanoparticles was conducted through spectroscopic and voltammetric techniques. TiO2 NPs, in conjunction with amine-functionalized multiwalled carbon nanotubes (NH2-fMWCNTs) enhanced the sensitivity of the transducer, while electrochemical impedance spectroscopy confirmed effective charge transport through the designed sensing platform. The sensor was found to exhibit the qualities of repeatability, specificity, and reproducibility, achieving a detection limit of 0.1 nM for BTB dye. For wastewater purification from BTB, Ag2O NPs were employed as a photocatalyst and the photocatalytic degradation monitored with electronic absorption spectroscopy revealed a 92% degradation of BTB dye within 30 minutes. Furthermore, Ni-doped SnO2 NPs were utilized for the adsorptive removal of the dye, demonstrating a maximum adsorption capacity of 90.90 mg g-1. The adsorption mechanism adhered to the Langmuir model at lower BTB concentrations and the Freundlich model at higher concentrations, with kinetics aligning with the intra-particle diffusion model. This research underscores the promise of electrocatalytic and photocatalytic nanomaterials as scalable, sustainable, and eco-friendly approaches to combat water pollution.
Collapse
Affiliation(s)
- Nashra Sheraz
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Syed Sakhawat Shah
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
2
|
Doi A, Ganguly M, Sharma P. Novel environmental applications of green tea: sensing and remediation of Ag + in aqueous system. RSC Adv 2024; 14:31243-31250. [PMID: 39355331 PMCID: PMC11443412 DOI: 10.1039/d4ra05545d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
The strong fluorescence of green tea was quenched with Fe3+ because of ligand-to-metal charge transfer and subsequent formation of magnetite (Fe3O4) nanoparticles (heavy metal effect). Ag+ restored the lost fluorescence by confining iron particles (capped with Cl-) with the formation of AgCl. Thus, toxic Ag was sensed in the aqueous system with a linear detection range of 10-4 M to 10-7 M and a detection limit of 4.1 × 10-9 M. The sensing protocol was applied for natural samples to detect Ag+. Gallic acid was found to be the pivotal component in the tea extract used to design a sensing platform. The company of the green tea were also varied and obtained comparable results.
Collapse
Affiliation(s)
- Ankita Doi
- Department of Biosciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Jaipur 303007 Rajasthan India
| |
Collapse
|
3
|
Rabia M, Elsayed AM, Abdallah Alnuwaiser M, Abdelazeez AAA. Ag 2S-Ag 2O-Ag/poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two-Electrode Symmetric Supercapacitor: Tested in Acidic and Basic Mediums. MICROMACHINES 2023; 14:1423. [PMID: 37512734 PMCID: PMC10383204 DOI: 10.3390/mi14071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
A Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was prepared using the photopolymerization reaction using AgNO3 as an oxidant. The size of the nanocomposite was about 40 nm, in which the morphology was confirmed using TEM and SEM analyses. The functional groups of Ag2S-Ag2O-Ag/P2ABT were confirmed using FTIR; also, XRD confirmed the inorganic Ag2S, Ag, and Ag2O formation. This nanocomposite has great performance in supercapacitor applications, with it tested in acidic (1.0 M HCl) and basic mediums (1.0 M NaOH). This pseudo-capacitor has great performance that appeared through the charge time in an acid medium in comparison to the basic medium with values of 118 s and 103 s, correspondingly. The cyclic voltammetry (CV) analysis further confirmed the excellent performance of the supercapacitor material, as indicated by the large area under the cyclic curve. The specific capacitance (CS) and energy density (E) values (at 0.3 A/g) were 92.5 and 44.4 F/g and 5.0 and 2.52 W·h·Kg-1 in the acidic and basic mediums, correspondingly. The charge transfer was studied through a Nyquist plot, and the produced Rs values were 4.9 and 6.2 Ω, respectively. Building on these findings, our objective is to make a significant contribution to the progress of supercapacitor technology through a prototype design soon.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Asmaa M Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
4
|
Patel A. Metal nanoparticles produced by plants with antibacterial properties against Staphylococcus aureus. BRAZ J BIOL 2023; 82:e268052. [PMID: 36888798 DOI: 10.1590/1519-6984.268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic bacteria that causes a variety of potentially fatal infections. The emergence of antibiotic-resistant strains of S. aureus has made treatment even more difficult. In recent years, nanoparticles have been used as an alternative therapeutic agent for S. aureus infections. Among various methods for the synthesis of nanoparticles, the method utilizing plant extracts from different parts of a plant, such as root, stem, leaf, flower, seeds, etc. is gaining widespread usage. Phytochemicals present in plant extract are an inexpensive, eco-friendly, natural material that act as reducing and stabilization agent for the nanoparticle synthesis. The utilization of plant-fabricated nanoparticles against S. aureus is currently in trend. The current review discusses recent findings in the therapeutic application of phytofabricated metal-based nanoparticles against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Shahzad Shirazi M, Moridi Farimani M, Foroumadi A, Ghanemi K, Benaglia M, Makvandi P. Bioengineered synthesis of phytochemical-adorned green silver oxide (Ag 2O) nanoparticles via Mentha pulegium and Ficus carica extracts with high antioxidant, antibacterial, and antifungal activities. Sci Rep 2022; 12:21509. [PMID: 36513776 PMCID: PMC9748139 DOI: 10.1038/s41598-022-26021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Silver oxide nanoparticles have various biomedical and pharmaceutical applications. However, conventional nanofabrication of Ag2O is associated with the use of toxic chemicals and organic solvents. To circumvent this hurdle, herein silver oxide quantum dots (Ag2O-QDs) were synthesized quickly (3 min) via the use of ultrasonic irradiation and plant-extract. Additionally, due to ultrasonic irradiation's effect on cell-wall destruction and augmentation of extraction efficiency, ultrasonic was also used in the preparation of Mentha pulegium and Ficus carica extracts (10 min, r.t) as natural eco-friendly reducing/capping agents. The UV-Vis result indicated a broad absorption peak at 400-500 nm. TEM/SEM analysis showed that ultrasound introduced a uniform spherical particle and significantly reduced particle size compared to the conventional heating method (∼ 9 nm vs. ∼ 100 nm). Silver and oxygen elements were found in the bio-synthesized Ag2O by EDS. The FTIR and phenol/flavonoid tests revealed the presence of phenol and flavonoid associated with the nanoparticles. Moreover, nanoparticles exhibited antioxidant/antibacterial/antifungal activities. The MIC and MBC results showed the Ag2O QDs synthesized with M. pulegium extract have the highest antibacterial activity against E. coli (MBC = MIC:15.6 ppm), which were significantly different from uncoated nanoparticles (MBC = MIC:500 ppm). The data reflects the role of phyto-synthesized Ag2O-QDs using ultrasonic-irradiation to develop versatile and green biomedical products.
Collapse
Affiliation(s)
- Maryam Shahzad Shirazi
- grid.412502.00000 0001 0686 4748Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran ,grid.4708.b0000 0004 1757 2822Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy
| | - Mahdi Moridi Farimani
- grid.412502.00000 0001 0686 4748Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Alireza Foroumadi
- grid.411705.60000 0001 0166 0922Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Ghanemi
- grid.484402.e0000 0004 0440 6745Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Maurizio Benaglia
- grid.4708.b0000 0004 1757 2822Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy
| | - Pooyan Makvandi
- grid.25786.3e0000 0004 1764 2907Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
| |
Collapse
|
6
|
Sagadevan S, Alshahateet SF, Anita Lett J, Fatimah I, Poonchi Sivasankaran R, Kassegn Sibhatu A, Leonardg E, Le MV, Soga T. Highly efficient photocatalytic degradation of methylene blue dye over Ag2O nanoparticles under solar light irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Shahzad Shirazi M, Foroumadi A, Saberikia I, Moridi Farimani M. Very rapid synthesis of highly efficient and biocompatible Ag 2Se QD phytocatalysts using ultrasonic irradiation for aqueous/sustainable reduction of toxic nitroarenes to anilines with excellent yield/selectivity at room temperature. ULTRASONICS SONOCHEMISTRY 2022; 87:106037. [PMID: 35709576 PMCID: PMC9201021 DOI: 10.1016/j.ultsonch.2022.106037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
There are many problems associated with the synthesis of nanocatalysts and catalytic reduction of nitroarenes - e.g., high temperatures, costs, long reaction/synthesis process times, the toxicity of chemicals/solvents, undesirable byproducts, the toxic/harmful wastes, low efficiency/selectivity, etc. This study represents an attempt to overcome these challenges. To this purpose, biocompatible and highly efficient Ag2Se quantum dots (QDs) catalysts with antibacterial activity were synthesized in a very rapid (30 sec, rt), simple, inexpensive, sustainable/green, and one-pot strategy in water using ultrasonic irradiation. Characterization of the QDs was performed using different techniques. UV-Vis absorption and fluorescence spectroscopic studies showed an absorption peak at 480-550 nm and a maximum emission peak around 675 nm, which confirmed the successful synthesis of Ag2Se QDs via the applied biosynthetic method. Subsequently, catalytic reduction of nitroarenes by them was carried out under safe conditions (H2O, rt, air atmosphere) in ∼ 60 min with excellent yield and selectivity (>99%). Their catalytic activity in the reduction of various toxic nitroarenes to aminoarenes under green conditions was investigated. Thus, a rapid and safe ultrasound-based method was employed to prepare stable and green Ag2Se QDs phyto-catalysts with unique properties, including exquisite monodispersity in shape (orthorhombic) and size (∼7 nm), air-stability, and good purity and crystallinity. Importantly, instead of various toxic chemicals, the plant extract obtained by rapid ultrasonic method (10 min, rt) was used as natural reducing, capping, and stabilizing agents. Moreover, antibacterial assays results showed that Ag2Se-QDs catalysts at low concentrations (ppm) have high activity against all tested bacteria, especially E. coli (MIC:31.25 ppm, MBC:125 ppm) which were significantly different from those of Fig extract (MIC = MBC:500 ppm). The data reflect the role of these bio-synthesized Ag2Se-QDs catalysts in the development of versatile and very safe catalysts with biomedical properties.
Collapse
Affiliation(s)
- Maryam Shahzad Shirazi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Saberikia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
8
|
Sherpa L, Arun N, Nageswara Rao S, Khan S, Pathak A, Tripathi A, Tiwari A. 200 MeV Ag ion irradiation mediated green synthesis and self assembly of silver nanoparticles into dendrites for enhanced SERS applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
10
|
Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01727-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|