1
|
Yadav A, Mustafa MA, Suleman AD, Al-Shami KR, Mahdi MS, Al-Tameemi AR, Ramadan MF, Yousif ZS, Joui R, Khuder SA, Alhadrawi M. Phographene as a new carbon allotrope for adsorption and detection of SO 2, AsH 3, NO 2, CF 3H, and CO 2 air pollutant gaseous species. J Mol Model 2024; 30:297. [PMID: 39085447 DOI: 10.1007/s00894-024-06063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
CONTEXT Phographene and its family member structures are of the newly proposed semiconductors for detection of chemicals. That is, in this project, the potential of using α-phographene (α-POG) both for adsorption and detection of five types of the most important air pollutant gases containing SO2, AsH3, CF3H, NO2, and CO2 species were investigated. The results of the time dependent density functional theory (TD-DFT) calculations indicate that during the adsorption of NO2, and SO2 by the sorbent, big redshifts occur (up to 866.2 nm, and 936.5, respectively) resulting in considerable changes in the orbitals and the electronic structures of the systems. Moreover, the results of the thermodynamic calculations reveal that α-POG could selectively adsorb SO2, NO2, and AsH3 gases (with different orders), but it could not adsorb the two other gases.Finally, the outcome of the band gap calculations shows that between all mentioned gases, α-POG could selectively detect the presence of SO2, and then NO2; while, this nanosheet could not sense the existence of AsH3, CF3H, or CO2 gases. METHODS All of the calculations were carried out by using the Gaussian 03 quantum chemical package. In addition, the physiochemical parameters were extracted from the output files for further calculations. Studies on all saddle points and the following calculations were performed applying the B3LYP/6-311g(d,p) level of theory.
Collapse
Affiliation(s)
- Anupam Yadav
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | | | - Karar R Al-Shami
- College of Science, Department of Forensic Sciences, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | | | | | - Raheem Joui
- Technical Engineering College, Al-Esraa University, Baghdad, Iraq
| | | | - Merwa Alhadrawi
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq.
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Hsu CY, Abdul Kareem Al-Hetty HR, Alsailawi HA, Islam S, Shather AH, Mekkey SM, Ahmed AA, Hadrawi SK, Ali Kahi N. A DFT study on the probability of using the heteroatom decorated graphitic carbonitride (g-C 3N 4) species for delivering of three novel Multiple sclerosis drugs. J Mol Graph Model 2023; 125:108605. [PMID: 37660616 DOI: 10.1016/j.jmgm.2023.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
In this project, the possibility of drug delivery application of three anti-Multiple sclerosis (MS) agents (containing diroximel fumarate (DXF), dimethyl fumarate (DMF), and mono methyl fumarate (MMF)) by using some heteroatom decorated graphitic carbonitride (g-C3N4) (as nano-sized carriers) have been systematically investigated. The results of the study have indicated that As-g-C3N4 QD is not a suitable candidate for drug delivery (at least in the cases of DMF, and DXF drugs); while, it would be an accurate semiconductor sensor for selective detection of each mentioned agents. Also, the use of the P-doped as well as pristine g-C3N4 QD could lead to weak electronic signals with relatively same values (in electronvolts). It means that P-g-C3N4, and g-C3N4 QDs are not good sensors for detection of each of the three considered drugs. However, those two sorbents would be suitable carriers for delivering of all three mentioned pharmaceuticals.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
| | | | - H A Alsailawi
- Department of Anesthesia Techniques, AlSafwa University College, Karbala, Iraq; Department of Biochemistry, Faculty of Medicine, University of Kerbala, 56001, Karbala, Iraq
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - A H Shather
- Department of computer engineering technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Shereen M Mekkey
- College of Pharmacy, Al- Mustaqbal University, 51001 Hilla, Babylon, Iraq
| | - Ahmed Aziz Ahmed
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Salema K Hadrawi
- Refrigeration and Air Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Naghmeh Ali Kahi
- Department of Applied Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Abbass R, Chlib Alkaaby HH, Kadhim ZJ, Izzat SE, Kadhim AA, Adhab AH, Pakravan P. Using the aluminum decorated graphitic-C 3N 4 quantum dote (QD) as a sensor, sorbent, and photocatalyst for artificial photosynthesis; a DFT study. J Mol Graph Model 2022; 117:108302. [PMID: 36049401 DOI: 10.1016/j.jmgm.2022.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
In this project, we have investigated the possibility of mimicking the natural photosynthesis, as well as sensing and adsorption application of aluminum decorated graphitic C3N4 (Al-g-C3N4) QDs (toward some air pollutants containing CO, CO2, and SO2). The results of the potential energy surface (PES) studies show that in all three adsorption processes, the energy changes are negative (-10.70 kcal mol-1, -16.81 kcal mol-1, and -79.97 kcal mol-1 for CO, CO2, and SO2 gasses, respectively). Thus, all of the adsorption processes (mainly SO2) are spontaneous. Moreover, the frontier molecular orbital (FMO) investigations indicate that the Al-g-C3N4 QD could be used as a suitable semiconductor sensor for detection of CO, and CO2 (as carbon oxides) in one hand, and SO2 gaseous species on the other hand. Finally, the results reveal that those QDs could be applied for artificial photosynthesis (in presence of CO2; Δμh-e = 1.43 V), and for water splitting process for the H2 generation (Δμh-e = 1.23 V) as a clean fuel for near future.
Collapse
Affiliation(s)
- Rathab Abbass
- Medical Lab, Techniques Department, College of Medical Techology, Al-Farahidi University, Iraq
| | | | - Zainab Jawad Kadhim
- Optics Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Athmar Ali Kadhim
- Medical Laboratories Teachniques, Hilla University College, Babylon, Iraq
| | | | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
4
|
New Schiff base ligand and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes: spectral investigation, biological applications, and semiconducting properties. Sci Rep 2022; 12:17942. [PMID: 36289280 PMCID: PMC9606359 DOI: 10.1038/s41598-022-22713-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
New Schiff base ligand, derived from antiviral valacyclovir, and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes have been synthesized. By using a variety of analytical and spectroscopic techniques, the type of bonding between the ligand and the metal ions in the recently formed complexes was clarified. The Schiff base ligand act as a bidentate and coordinated with the metal ions through the azomethine-N and the phenolic-O centers, in a mono-deprotonated form. Except for the Zn(II) complex, which displayed a tetrahedral geometry, all complexes displayed octahedral geometry. The TGA findings supported that the stability and decomposition properties of the metal complexes were entirely distinct from one another. The thermogram showed decomposition of all investigated metal complexes above 200 °C in three, four or five steps, and indicated the high thermal stability of these complexes. According to XRD patterns, the particles of these complexes were located at the nanoscale. Moreover, for all the samples analyzed, the TEM images showed uniform and homogeneous surface morphology. The biological activity revealing the high efficiencies of the screened complexes as antibacterial and antitumor agents. The antimicrobial activity of the ligand and its complexes was examined against a variety of pathogenic bacteria and fungi including Escherichia coli, Staphylococcus aureus and Candida albicans. The data obtained revealed that the metal ion in the complexes enhanced the antimicrobial activity compared to the free ligand. The high efficiencies toward S. aureus, E. coli, and C. albicans appeared by Cu(II) complex 23, Ni(II) complex 20, and Ni(II) complex 19, respectively. The antitumor activity of the ligand and its complexes was tested against Hepatocellular carcinoma cell line (HepG-2 cells), the residue 28 which produced after heating the Cu(II) complex 25 at 200 °C for 1 h, exhibited strong inhibition of HepG-2 cell growth. The results of the DNA cleavage investigation demonstrated the ability of investigated Cu(II) complex to degrade DNA. The docking findings showed strong interactions of both the ligand and its examined Cu(II) complex, revealing their ability to cleavage DNA and their potent inhibitory effects on tumor cells. The electrical conductivity study confirmed that the ligand and its investigated complexes had semiconducting properties.
Collapse
|
5
|
Ragab A, Ammar YA, Ezzat A, Mahmoud AM, Mohamed MBI, El-Tabl AS, Farag RS. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput Biol Med 2022; 145:105473. [PMID: 35395516 DOI: 10.1016/j.compbiomed.2022.105473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 μg/mL) against bacterial strains and (MIC = 7.81 μg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 μg/mL) and (MFC = 13.58 μg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Ezzat
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ammar M Mahmoud
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Basseem I Mohamed
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
6
|
Abdelrahman MS, Omar FM, Saleh AA, El-ghamry MA. Synthesis, molecular modeling, and docking studies of a new pyridazinone-acid hydrazone ligand, and its nano metal complexes. Spectroscopy, thermal analysis, electrical properties, DNA cleavage, antitumor, and antimicrobial activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
El-ghamry MA, Shebl M, Saleh AA, Khalil SM, Dawy M, Ali AA. Spectroscopic characterization of Cu(II), Ni(II), Co(II) complexes, and nano copper complex bearing a new S, O, N-donor chelating ligand. 3D modeling studies, antimicrobial, antitumor, and catalytic activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Khedr AM, El‐Ghamry HA, El‐Sayed YS. Nano‐synthesis, solid‐state structural characterization, and antimicrobial and anticancer assessment of new sulfafurazole azo dye‐based metal complexes for further pharmacological applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdalla M. Khedr
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Hoda A. El‐Ghamry
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Yusif S. El‐Sayed
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
9
|
Diana R, Caruso U, Panunzi B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers (Basel) 2021; 13:3712. [PMID: 34771269 PMCID: PMC8588226 DOI: 10.3390/polym13213712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure-responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ugo Caruso
- Department of Chemical Science, University of Naples Federico II, 80126 Napoli, Italy;
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|