1
|
Yu X, Wang M, Wang D, Wei M, Li F, Lyu Y, Liu J. Biosynthesis of Feruloyl Glycerol from Ferulic Acid and Glycerol Through a Two-Enzyme Cascade Reaction. Appl Biochem Biotechnol 2024; 196:8572-8586. [PMID: 38884855 DOI: 10.1007/s12010-024-04984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Feruloyl glycerol (FG) has a variety of biological activities, but the green synthesis methods of FG remain rare. In this study, FG was prepared by a cascade reaction catalyzed by 4-coumarate coenzyme A ligase (4CL) and hydroxycinnamoyl acyltransferase 4 (HCT4). The cascade reaction carried out at solvent water and room temperature is more convenient and greener. Firstly, the product derived from the cascade reaction was characterized by TLC, HPLC, FTIR, and ESI-MS. The results showed that the product was FG. Secondly, the effects of temperature, pH, enzyme ratio, Mg2+ concentration, and CoA concentration on the cascade reaction were investigated. Consequently, the highest reaction rate was obtained at 30 °C, pH 6, an enzyme ratio of 1:3, and Mg2+ concentration of 5 mM. Finally, semi-preparative scale synthesis for FG was conducted. The production of FG reached 35.1 mM at 24 h with the FG conversion of 70.18%. In a word, a novel idea for the efficient and green synthesis of FG was proposed, which had great potential for industrial application.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Minyang Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China.
| |
Collapse
|
2
|
Shi M, Pei H, Sun L, Chen W, Zong Y, Zhao Y, Du R, He Z. Optimization of the Flavonoid Extraction Process from the Stem and Leaves of Epimedium Brevicornum and Its Effects on Cyclophosphamide-Induced Renal Injury. Molecules 2023; 29:207. [PMID: 38202790 PMCID: PMC10780727 DOI: 10.3390/molecules29010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclophosphamide (CTX) is a broad-spectrum alkylated antitumor drug. It is clinically used in the treatment of a variety of cancers, and renal toxicity is one of the adverse reactions after long-term or repeated use, which not only limits the therapeutic effect of CTX, but also increases the probability of kidney lesions. The total flavonoids of Epimedium stem and leaf (EBF) and Icariin (ICA) are the main medicinal components of Epimedium, and ICA is one of the main active substances in EBF. Modern pharmacological studies have shown that EBF has a variety of biological activities such as improving osteoporosis, promoting cell proliferation, antioxidant and anti-inflammatory properties, etc. However, few studies have been conducted on the nephrotoxicity caused by optimized CTX extraction, and protein-ligand binding has not been involved. This research, through the response surface optimization extraction of EBF, obtained the best extraction conditions: ethanol concentration was 60%, solid-liquid ratio of 25:1, ultrasonic time was about 25 min. Combined with mass spectrometry (MS) analysis, EBF contained ICA, ichopidin A, ichopidin B, ichopidin C, and other components. In this study, we adopted a computational chemistry method called molecular docking, and the results show that Icariin was well bound to the antioxidant target proteins KEAP1 and NRF2, and the anti-inflammatory target proteins COX-2 and NF-κB, with free binding energies of -9.8 kcal/mol, -11.0 kcal/mol, -10.0 kcal/mol, and -8.1 kcal/mol, respectively. To study the protective effect of EBF on the nephrotoxicity of CTX, 40 male Kunming mice (weight 18 ± 22) were injected with CTX (80 mg/kg) for 7 days to establish the nephrotoxicity model and were treated with EBF (50 mg/kg, 100 mg/kg) for 8 days by gavage. After CTX administration, MDA, BUN, Cre, and IL-6 levels in serum increased, MDA increased in kidney, GPT/ALT and IL-6 increased in liver, and IL-6 increased in spleen and was significant ((p < 0.05 or (p < 0.01)). Histopathological observation showed that renal cortex glomerular atrophy necrosis, medullary inflammatory cell infiltration, and other lesions. After administration of EBF, CTX-induced increase in serum level of related indexes was reduced, and MDA in kidney, GPT/ALT and IL-6 in liver, and IL-6 in spleen were increased. At the same time, histopathological findings showed that the necrosis of medullary and corticorenal tubular epithelium was relieved at EBF (50 mg/kg) dose compared with the CTX group, and the glomerular tubular necrosis gradually became normal at EBF (100 mg/kg) dose. Western blot analysis of Keap1 and Nrf2 protein expression in kidney tissue showed that compared with model CTX group, the drug administration group could alleviate the high expression of Keap1 protein and low expression of Nrf2 protein in kidney tissue. Conclusion: After the optimal extraction of total flavonoids from the stems and leaves of Epimedium, the molecular docking technique combined with animal experiments suggested that the effective component of the total flavonoids of Epimedium might activate the Keap1-Nrf2 signaling pathway after treatment to reduce the inflammation and oxidative stress of kidney tissue, so as to reduce kidney damage and improve kidney function. Therefore, EBF may become a new natural protective agent for CTX chemotherapy in the future.
Collapse
Affiliation(s)
- Meiling Shi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Hongyan Pei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Li Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
3
|
Evans KO, Compton DL, Skory CD, Appell M. Biophysical characterization of α-glucan nanoparticles encapsulating feruloylated soy glycerides (FSG). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00817. [PMID: 38020725 PMCID: PMC10658199 DOI: 10.1016/j.btre.2023.e00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Water insoluble α-glucans that were enzymatically synthesized using glucansucrase that was cloned from Leuconostoc mesenteroides NRRL B-1118 were previously shown to form nanoparticles via high pressure homogenization. These α-glucan nanoparticles were previously shown capable of encapsulating a small hydrophobic molecule. This work demonstrates that the same α-glucan can be formed into nanoparticles that encapsulate feruloylated soy glycerides from modified soybean oil, a product of interest to the cosmetic and skin care industries because of the UV absorbance and antioxidant properties of the feruloyl moiety. It is demonstrated that the feruloylated soy glyceride/α-glucan nanoparticles have distinct size, zeta potential and thermal profiles from that of nanoparticles made from α-glucan alone or feruloylated soy glyceride alone. Thermal analysis also demonstrates the release of feruloylated soy glycerides from the α-glucan nanoparticles.
Collapse
Affiliation(s)
- Kervin O. Evans
- USDA, Agricultural Research Service, National Center of Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University Street, Peoria, IL 61604, United States of America
| | - David L. Compton
- USDA, Agricultural Research Service, National Center of Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University Street, Peoria, IL 61604, United States of America
| | - Christopher D. Skory
- USDA, Agricultural Research Service, National Center of Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University Street, Peoria, IL 61604, United States of America
| | - Michael Appell
- Mycotoxin Prevention and Applied Microbiology Research, 1815 N. University Street, Peoria, IL 61604, United States of America
| |
Collapse
|
4
|
Corsi F, Di Meo E, Lulli D, Deidda Tarquini G, Capradossi F, Bruni E, Pelliccia A, Traversa E, Dellambra E, Failla CM, Ghibelli L. Safe-Shields: Basal and Anti-UV Protection of Human Keratinocytes by Redox-Active Cerium Oxide Nanoparticles Prevents UVB-Induced Mutagenesis. Antioxidants (Basel) 2023; 12:antiox12030757. [PMID: 36979005 PMCID: PMC10045349 DOI: 10.3390/antiox12030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Cerium oxide nanoparticles (nanoceria), biocompatible multifunctional nanozymes exerting unique biomimetic activities, mimic superoxide-dismutase and catalase through a self-regenerating, energy-free redox cycle driven by Ce3+/4+ valence switch. Additional redox-independent UV-filter properties render nanoceria ideal multitask solar screens, shielding from UV exposure, simultaneously protecting tissues from UV-oxidative damage. Here, we report that nanoceria favour basal proliferation of primary normal keratinocytes, and protects them from UVB-induced DNA damage, mutagenesis, and apoptosis, minimizing cell loss and accelerating recovery with flawless cells. Similar cell-protective effects were found on irradiated noncancerous, but immortalized, p53-null HaCaT keratinocytes, with the notable exception that here, nanoceria do not accelerate basal HaCaT proliferation. Notably, nanoceria protect HaCaT from oxidative stress induced by irradiated titanium dioxide nanoparticles, a major active principle of commercial UV-shielding lotions, thus neutralizing their most critical side effects. The intriguing combination of nanoceria multiple beneficial properties opens the way for smart and safer containment measures of UV-induced skin damage and carcinogenesis.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erika Di Meo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniela Lulli
- Experimental Immunology Laboratory, IDI-IRCCS, 00167 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Capradossi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (F.C.); (L.G.); Tel.: +39-06-7259-4218 (L.G.)
| | - Emanuele Bruni
- Experimental Immunology Laboratory, IDI-IRCCS, 00167 Rome, Italy
| | - Andrea Pelliccia
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, IDI-IRCCS, 00167 Rome, Italy
| | | | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (F.C.); (L.G.); Tel.: +39-06-7259-4218 (L.G.)
| |
Collapse
|
5
|
Effect of Ferulic Acid and Its Derivatives on Cold-Pressed Flaxseed Oil Oxidative Stability and Bioactive Compounds Retention during Oxidation. Foods 2023; 12:foods12051088. [PMID: 36900605 PMCID: PMC10000395 DOI: 10.3390/foods12051088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ferulic acid (FA) is a naturally occurring phenolic antioxidant that is widely used in the food, pharmaceutical, and cosmetic industries due to its low toxicity. Its derivatives also find numerous industrial applications and may have even higher biological activity than ferulic acid. In this study, the effect of the addition of FA and its derivatives-including vanillic acid (VA), dihydroferulic acid (DHFA), and 4-vinylguaiacol (4-VG)-on the oxidative stability of cold-pressed flaxseed oil and the degradation of bioactive compounds during oxidation was investigated. The results showed that FA and its derivatives affected the oxidative stability of flaxseed oil, but their antioxidant activity depended on the concentration (25-200 mg/100 g oil) and temperature of treatment (60-110 °C). Based on Rancimat test results, flaxseed oil oxidative stability predicted at 20 °C increased linearly with ferulic acid concentration, while its derivatives effectively prolonged the induction time at lower concentrations (50-100 mg/100 g oil). The addition of phenolic antioxidants (80 mg/100 g) generally showed a protective effect against polyunsaturated fatty acids (DHFA and 4-VG), sterols (4-VG), tocols (DHFA), squalene, and carotenoids (FA). The exception was VA, which increased the degradation of most bioactive compounds. It is believed that adding properly composed mixtures of FA and its derivatives (DHFA and 4-VG) can extend the shelf life of flaxseed oil and provide nutritional benefits.
Collapse
|
6
|
Dungan AM, Hartman LM, Blackall LL, van Oppen MJH. Exploring microbiome engineering as a strategy for improved thermal tolerance in Exaiptasia diaphana. J Appl Microbiol 2022; 132:2940-2956. [PMID: 35104027 PMCID: PMC9303619 DOI: 10.1111/jam.15465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Aims Fourteen percent of all living coral, equivalent to more than all the coral on the Great Barrier Reef, has died in the past decade as a result of climate change‐driven bleaching. Inspired by the ‘oxidative stress theory of coral bleaching’, we investigated whether a bacterial consortium designed to scavenge free radicals could integrate into the host microbiome and improve thermal tolerance of the coral model, Exaiptasia diaphana. Methods and Results E. diaphana anemones were inoculated with a consortium of high free radical scavenging (FRS) bacteria, a consortium of congeneric low FRS bacteria, or sterile seawater as a control, then exposed to elevated temperature. Increases in the relative abundance of Labrenzia during the first 2 weeks following the last inoculation provided evidence for temporary inoculum integration into the E. diaphana microbiome. Initial uptake of other consortium members was inconsistent, and these bacteria did not persist either in E. diaphana’s microbiome over time. Given their non‐integration into the host microbiome, the ability of the FRS consortium to mitigate thermal stress could not be assessed. Importantly, there were no physiological impacts (negative or positive) of the bacterial inoculations on the holobiont. Conclusions The introduced bacteria were not maintained in the anemone microbiome over time, thus, their protective effect is unknown. Achieving long‐term integration of bacteria into cnidarian microbiomes remains a research priority. Significance and Impact of the Study Microbiome engineering strategies to mitigate coral bleaching may assist coral reefs in their persistence until climate change has been curbed. This study provides insights that will inform microbiome manipulation approaches in coral bleaching mitigation research.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Leon M Hartman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.,Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
7
|
Compton DL, Appell M, Kenar JA, Evans KO. Enzymatic Synthesis and Flash Chromatography Separation of 1,3-Diferuloyl- sn-Glycerol and 1-Feruloyl- sn-Glycerol. Methods Protoc 2020; 3:E8. [PMID: 31963292 PMCID: PMC7189784 DOI: 10.3390/mps3010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Ethyl ferulate was transesterified with Enova Oil (a soy-based vegetable oil containing 80-85% diacylglycerol) using Novozym 435 at 60 °C. The resultant feruloylated vegetable oil reaction product produced a precipitate (96.4 g, 4.02 wt%) after 7 d of standing at room temperature. Preliminary characterization of the precipitate identified the natural phenylpropenoids 1,3-diferuloyl-sn-glycerol (F2G) and 1-feruloyl-sn-glycerol (FG) as the major components. A flash chromatography method was developed and optimized (e.g., mass of sample load, flow rate, binary solvent gradient slope, and separation run length) using a binary gradient of hexane and acetone mobile phase and silica gel stationary phase to separate and isolate F2G and FG. The optimized parameters afforded F2G (1.188 ± 0.052 g, 39.6 ± 1.7%) and FG (0.313 ± 0.038 g, 10.4 ± 1.3%) from 3.0 g of the transesterification precipitate, n = 10 trials. Overall, all flash chromatography separations combined, F2G (39.1 g, 40.6%) and FG (9.4 g, 9.8%) were isolated in a combined yield of 48.5 g (51.4%), relative to the 96.4 g of transesterification precipitate collected. The optimized flash chromatography method was a necessary improvement over previously reported preparative HPLC and column chromatography methods used to purify milligram to low gram quantities of F2G and FG to be able to process ~100 g of material in a timely, efficient manner.
Collapse
Affiliation(s)
- David L. Compton
- Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA;
| | - Michael Appell
- Mycotoxin Prevention and Applied Microbiology, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA;
| | - James A. Kenar
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA;
| | - Kervin O. Evans
- Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA;
| |
Collapse
|