1
|
Sammari H, Jedidi S, Selmi H, Jridi M, Ayari A, Sebai H. Phytochemical Properties of Crataegus azarolus Berries Decoction Extract and Evaluation of its Protective Activity Against Acetic Acid-Induced Ulcerative Colitis in Rats. Dose Response 2024; 22:15593258241226890. [PMID: 38223297 PMCID: PMC10785741 DOI: 10.1177/15593258241226890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
The present study aims to evaluate the protective effect of Crataegus azarolus berries decoction extract (CAB-DE) against acetic acid-induced ulcerative colitis as well as the mechanisms implicated in such protection. Adult male Wistar rats were separated into seven groups: Control (H2O), acetic acid (AA), AA + various doses of CAB-DE (100, 200, and 400 mg/kg, b.w.,p.o.), and AA + sulfasalazine (100 mg/kg, b.w.,p.o.) or gallic acid (50 mg/kg, b.w.,p.o.) during 10 days. All rats were kept fasting overnight and ulcerative colitis was induced by rectal infusion of AA (300 mg kg-1, b.w.) (3%, v/v, 5 mL kg-1 b.w), for 30 s. The colon was rapidly excised and macroscopically examined to measure ulcerated surfaces and the ulcer index. In vitro, we found that CAB-DE exhibited a high antioxidant activity against DPPH radical (IC50 = 164.17 ± 4.78 μg/mL). In vivo, pretreatment with CAB-DE significantly protected the colonic mucosa against AA-induced damage by stimulating mucus secretion, reducing ulcer index as well as histopathological changes. Also, CAB-DE limited the oxidative status induced by AA in the colonic mucosa, as assessed by MDA and H2O2 increased levels and the depletion of both enzymatic activities and non-enzymatic levels. In addition, AA intoxication increased iron and calcium levels in colonic mucosa and plasma, while CAB-DE pretreatment regulated all intracellular mediators deregulation and significantly reduced inflammatory markers such as CRP (1.175 ± .04 ─ .734 ± .06 μg/dl) and ALP (161.53 ± 5.02 ─ 98.60 ± 4.21 UI/L) levels. We suggest that CAB-DE protected against AA-induced ulcerative colitis due in part to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Houcem Sammari
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Saber Jedidi
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Houcine Selmi
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Mourad Jridi
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
| | - Ala Ayari
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
| | - Hichem Sebai
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de la Manouba, Manouba, Tunisie
| |
Collapse
|
2
|
Vera-Cespedes N, Muñoz LA, Rincón MÁ, Haros CM. Physico-Chemical and Nutritional Properties of Chia Seeds from Latin American Countries. Foods 2023; 12:3013. [PMID: 37628012 PMCID: PMC10453379 DOI: 10.3390/foods12163013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In the last few decades, chia (Salvia hispanica L.) cultivation has expanded around the world, and the seeds have become well known due to their rich composition of nutrients and bioactive compounds. The aim of this work was to evaluate the physical, chemical, and nutritional profile of eight types of chia seeds grown in different Latin-American countries (Argentina, Bolivia, Chile, Ecuador, Mexico, Paraguay, and Peru). The results showed that several nutritional parameters of the seeds, such as the protein content and amino acid profile, dietary fiber content, lipid content, mineral composition, and presence of phytate, depend on the location in which they were grown. Other parameters, such as ash content, fatty acid profile, or various physical parameters, were uniform across locations (except for color parameters). The results support the notion that the nutritional characteristics of seeds are determined by the seeds' origin, and further analysis is needed to determine the exact mechanisms that control the changes in the seed nutritional properties of chia seeds.
Collapse
Affiliation(s)
- Natalia Vera-Cespedes
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Spanish Council for Scientific Research (CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain;
- Laboratorio de Ciencias de los Alimentos, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330546, CP, Chile
| | - Loreto A. Muñoz
- Laboratorio de Ciencias de los Alimentos, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330546, CP, Chile
| | - Miguel Ángel Rincón
- Department of Agronomy, Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain;
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, CP, Chile
| | - Claudia M. Haros
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Spanish Council for Scientific Research (CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
3
|
Gutiérrez‐Luna K, Ansorena D, Astiasarán I. Fatty acid profile, sterols, and squalene content comparison between two conventional (olive oil and linseed oil) and three non‐conventional vegetable oils (echium oil, hempseed oil, and moringa oil). J Food Sci 2022; 87:1489-1499. [PMID: 35279846 PMCID: PMC9313813 DOI: 10.1111/1750-3841.16111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022]
Abstract
Abstract New sources of bioactive compounds are constantly explored for reformulating healthier foods. This work aimed to explore and characterize the fatty acid profile and sterol content of three non‐conventional oils used in functional food products (hempseed oil, moringa oil, and echium oil) and to compare them with two conventional ones (extra virgin olive oil [EVOO] and linseed oil). Oxidative stability was assessed by determining their acidity value and peroxide content. All oils showed adequate values for acidity and oxidation status. Echium and hempseed oils showed a high content of polyunsaturated fatty acids (>70%), especially omega‐3 fatty acids, while moringa oil was rich in oleic acid. Echium oil, hempseed oil, and moringa oil presented higher sterol content than EVOO, but lower than that of linseed oil. Sitosterol was the most abundant sterol in all samples (97.88–275.36 mg/100 g oil), except in echium oil, where campesterol (170.62 mg/100 g oil) was the major sterol. Squalene was only found in significant amounts in EVOO. In conclusion, non‐conventional oils seem to be interesting sources of bioactive compounds and have great potential for the food industry. Practical Application Non‐conventional vegetable oils can be used as alternative sources of lipids in a variety of food products. Additionally, these oils have great potential to be included in the formulation of functional ingredients for the delivery of omega‐3 fatty acids, antioxidants, fiber, among others.
Collapse
Affiliation(s)
- Katherine Gutiérrez‐Luna
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| |
Collapse
|
4
|
Zhang H, Yuan Y, Zhu X, Xu R, Shen H, Zhang Q, Ge X. The Effect of Different Extraction Methods on Extraction Yield, Physicochemical Properties, and Volatile Compounds from Field Muskmelon Seed Oil. Foods 2022; 11:foods11050721. [PMID: 35267354 PMCID: PMC8909143 DOI: 10.3390/foods11050721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
Field muskmelon seed oil was extracted by press extraction (PE), Soxhlet extraction (SE), organic extraction (OSE), and aqueous extraction (AE). The oils were then evaluated for their physicochemical properties, fatty acid composition, volatile compounds, and antioxidant properties. A high yield oil was found in the SE sample. The AE sample had the highest elevated acid and peroxide values, while PE and OSE had the highest oil iodine content. The oil samples did not differ significantly in their fatty acid profile depending on the extraction method. However, E-nose, HS-GC-IMS, and HS-SPME-GC-MS showed that the flavor composition of the four samples was significantly different, attributed to the changes in the composition and content of the compounds caused by the different extraction methods. Furthermore, the strongest FRAP and the free radical scavenging ability of DPPH and ABTS+ showed in the SE sample. In general, SE’s seed oil has certain advantages when applied to the muskmelon seed oil industry.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (H.Z.); (Y.Y.); (X.Z.); (R.X.)
| | - Yushu Yuan
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (H.Z.); (Y.Y.); (X.Z.); (R.X.)
| | - Xiuxiu Zhu
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (H.Z.); (Y.Y.); (X.Z.); (R.X.)
| | - Runzhe Xu
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (H.Z.); (Y.Y.); (X.Z.); (R.X.)
| | - Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (H.S.); (Q.Z.)
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (H.S.); (Q.Z.)
| | - Xiangzhen Ge
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (H.Z.); (Y.Y.); (X.Z.); (R.X.)
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (H.S.); (Q.Z.)
- Correspondence:
| |
Collapse
|
5
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
6
|
Ferreira de Mello BT, Stevanato N, Filho LC, da Silva C. Pressurized liquid extraction of radish seed oil using ethanol as solvent: Effect of pretreatment on seeds and process variables. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Xu S, Lv X, Wu B, Xie Y, Wu Z, Tu X, Chen H, Wei F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9012-9024. [PMID: 33683118 DOI: 10.1021/acs.jafc.0c07268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Echium oil has great nutritional value as a result of its high content of α-linolenic acid (ALA, 18:3ω-3) and stearidonic acid (SDA, 18:4ω-3). However, the comprehensive lipid profiling and exact structural characterization of bioactive polyunsaturated lipids in echium oil have not yet been obtained. In this study, we developed a novel pseudotargeted lipidomics strategy for comprehensive profiling and lipid structural elucidation of polyunsaturated lipid-rich echium oil. Our approach integrated untargeted lipidomics analysis with a targeted lipidomics strategy based on Paternò-Büchi (PB)-tandem mass spectrometry (MS/MS) using 2-acetylpyridine (2-AP) as the reaction reagent, allowing for high-coverage lipid profiling and simultaneous determination of C═C locations in triacylglycerols (TGs), diacylglycerols (DGs), free fatty acids (FFAs), and sterol esters (SEs) in echium oil. A total of 209 lipid species were profiled, among which 162 unsaturated lipids were identified with C═C location assignment and 42 groups of ω-3 and ω-6 C═C location isomers were discovered. In addition, relative isomer ratios of certain groups of lipid C═C location isomers were revealed. This pseudotargeted lipidomics strategy described in this study is expected to provide new insight into structural characterization of distinctive bioactive lipids in food.
Collapse
Affiliation(s)
- Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinghao Tu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
8
|
Mikołajczak N, Tańska M, Ogrodowska D. Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Santos KA, Silva EA, Silva C. Ultrasound‐assisted extraction of favela (
Cnidoscolus quercifolius
) seed oil using ethanol as a solvent. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kátia Andressa Santos
- Programa de Pós‐Graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Edson Antônio Silva
- Programa de Pós‐Graduação em Engenharia Química Universidade Estadual do Oeste do Paraná (UNIOESTE) Toledo Brazil
| | - Camila Silva
- Programa de Pós‐Graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
- Departamento de Tecnologia Universidade Estadual de Maringá (UEM) Umuarama Brazil
| |
Collapse
|
10
|
Santos KA, de Aguiar CM, da Silva EA, da Silva C. Evaluation of favela seed oil extraction with alternative solvents and pressurized-liquid ethanol. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|