1
|
Hun T, Liu Y, Guo Y, Sun Y, Fan Y, Wang W. A micropore array-based solid lift-off method for highly efficient and controllable cell alignment and spreading. MICROSYSTEMS & NANOENGINEERING 2020; 6:86. [PMID: 34567696 PMCID: PMC8433473 DOI: 10.1038/s41378-020-00191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/03/2020] [Indexed: 05/04/2023]
Abstract
Interpretation of cell-cell and cell-microenvironment interactions is critical for both advancing knowledge of basic biology and promoting applications of regenerative medicine. Cell patterning has been widely investigated in previous studies. However, the reported methods cannot simultaneously realize precise control of cell alignment and adhesion/spreading with a high efficiency at a high throughput. Here, a novel solid lift-off method with a micropore array as a shadow mask was proposed. Efficient and precise control of cell alignment and adhesion/spreading are simultaneously achieved via an ingeniously designed shadow mask, which contains large micropores (capture pores) in central areas and small micropores (spreading pores) in surrounding areas contributing to capture/alignment and adhesion/spreading control, respectively. The solid lift-off functions as follows: (1) protein micropattern generates through both the capture and spreading pores, (2) cell capture/alignment control is realized through the capture pores, and (3) cell adhesion/spreading is controlled through previously generated protein micropatterns after lift-off of the shadow mask. High-throughput (2.4-3.2 × 104 cells/cm2) cell alignments were achieved with high efficiencies (86.2 ± 3.2%, 56.7 ± 9.4% and 51.1 ± 4.0% for single-cell, double-cell, and triple-cell alignments, respectively). Precise control of cell spreading and applications for regulating cell skeletons and cell-cell junctions were investigated and verified using murine skeletal muscle myoblasts. To the best of our knowledge, this is the first report to demonstrate highly efficient and controllable multicell alignment and adhesion/spreading simultaneously via a simple solid lift-off operation. This study successfully fills a gap in literatures and promotes the effective and reproducible application of cell patterning in the fields of both basic mechanism studies and applied medicine.
Collapse
Affiliation(s)
- Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Institute of Microelectronics, Peking University, 100871 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yechang Guo
- Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083 Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083 Beijing, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, 100871 Beijing, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, 100871 Beijing, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, 100871 Beijing, China
| |
Collapse
|
2
|
Functionalization of poly(ε-caprolactone) surface with lactose-modified chitosan via alkaline hydrolysis: ToF-SIMS characterization. Biointerphases 2016; 11:02A323. [PMID: 26905217 DOI: 10.1116/1.4942498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Functionalization of poly(ε-caprolactone) (PCL) was performed via hydrolysis and subsequent grafting of lactose-modified chitosan (chitlac) at two different degrees of derivatization (9% and 64%). Time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis (principal component analysis) were successfully applied to the characterization of PCL surface chemistry, evidencing changes in the biopolymer surface following base-catalyzed hydrolysis treatment. ToF-SIMS analysis also confirmed positive EDC/NHS-catalyzed (EDC: N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide; NHS: N-hydroxysuccinimide) immobilization of chitlac onto activated PCL surface, with formation of amide bonds between PCL surface carboxyl groups and amine residues of chitlac. Yield of grafting reaction was also shown to be dependent upon the lactosilation degree of chitlac.
Collapse
|
3
|
Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater 2015; 4:1742-62. [PMID: 26097108 PMCID: PMC4597933 DOI: 10.1002/adhm.201500168] [Citation(s) in RCA: 516] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/26/2015] [Indexed: 12/21/2022]
Abstract
The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation.
Collapse
Affiliation(s)
- Anh-Vu Do
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Behnoush Khorsand
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
4
|
Hsiao TW, Tresco PA, Hlady V. Astrocytes alignment and reactivity on collagen hydrogels patterned with ECM proteins. Biomaterials 2014; 39:124-30. [PMID: 25477179 DOI: 10.1016/j.biomaterials.2014.10.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/19/2014] [Indexed: 02/07/2023]
Abstract
To modulate the surface properties of collagen and subsequent cell-surface interactions, a method was developed to transfer protein patterns from glass coverslips to collagen type I hydrogel surfaces. Two proteins and one proteoglycan found in central nervous system extracellular matrix as well as fibrinogen were patterned in stripes onto collagen hydrogel and astrocytes were cultured on these surfaces. The addition of the stripe protein patterns to hydrogels created astrocyte layers in which cells were aligned with underlying patterns and had reduced chondroitin sulfate expression compared to the cells grown on collagen alone. Protein patterns were covalently cross-linked to the collagen and stable over four days in culture with no visible cellular modifications. The present method can be adapted to transfer other types of protein patterns from glass coverslips to collagen hydrogels.
Collapse
Affiliation(s)
- Tony W Hsiao
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick A Tresco
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Vladimir Hlady
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Lima M, Correlo V, Reis R. Micro/nano replication and 3D assembling techniques for scaffold fabrication. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:615-21. [DOI: 10.1016/j.msec.2014.05.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|