1
|
Huskić M, Slemenik Perše L, Orel B, Mihelčič M. Isotactic Polypropylene (iPP) Foils-Correlation of Core and Shell Crystallinity with Mechanical Properties Obtained by Nanoindentation. Polymers (Basel) 2025; 17:736. [PMID: 40292594 PMCID: PMC11944819 DOI: 10.3390/polym17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
This study investigates the correlation between the crystallinity and mechanical properties of calendered isotactic polypropylene (iPP) foils, focusing on the influence of haul-off speed and additive type. Two groups of iPP foils produced on an industrial scale were compared: (i) foils containing 10 wt.% recycled PP at haul-off speeds of 2 and 10 m/min; and (ii) foils with different additives (neat PP, 10 wt.% recycled PP, and PP random copolymer) at a constant haul-off speed of 10 m/min. All foils exhibited a pronounced skin-core structure, with the inner surface showing higher crystallinity (up to 10%) due to slower cooling rates, as determined by Flash Differential Scanning Calorimetry (Flash DSC). Nanoindentation tests correlated these differences in crystallinity with variations in the hardness and elastic modulus across the cross-section of the foil. Higher haul-off speeds (10 m/min) resulted in increased crystallinity, a higher elastic modulus and higher hardness. Polarized optical microscopy (POM) confirmed the morphological differences and highlighted the presence of highly oriented skin layers and stratified crystalline structures. These findings emphasize the significant influence of processing conditions, such as hauling speed and the addition of recycled polypropylene or a random copolymer, on the mechanical and optical properties of iPP foils. This comprehensive approach to characterizing complex structure-property relationships is valuable for optimizing the production and performance of polypropylene-based packaging foils on an industrial scale.
Collapse
Affiliation(s)
- Miroslav Huskić
- Faculty of Polymer Technology, Ozare 19, 2380 Slovenj Gradec, Slovenia;
- TECOS, Slovenian Tool and Die Development Centre, Kidričeva 25, 3000 Celje, Slovenia
- Pomurje Science and Inovation Centre, Lendavska ulica 5a, 9000 Murska Sobota, Slovenia
| | - Lidija Slemenik Perše
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva ulica 6, 1000 Ljubljana, Slovenia;
| | - Boris Orel
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Mohor Mihelčič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva ulica 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Willerer T, Brinkmann T, Drechsler K. Development and Application of a Cooling Rate Dependent PVT Model for Injection Molding Simulation of Semi Crystalline Thermoplastics. Polymers (Basel) 2024; 16:3194. [PMID: 39599285 PMCID: PMC11598747 DOI: 10.3390/polym16223194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
This technical paper delves into the creation and application of an enhanced mathematical model for semi crystalline thermoplastics based on the Pressure-Volume-Temperature (PVT) Two Domain Tait Equation. The model is designed to incorporate the impact of the cooling rate on the specific volume of the material. This is achieved by utilizing Flash differential scanning calorimetry (fDSC) measurements, thereby ensuring a direct correlation to the actual behavior of the material in reality. The practical application of the model in the context of injection molding simulation was also considered. This was done by integrating the mathematical model into the Moldflow software via the Solver API. The paper underscores the discontinuity issue inherent in the traditional Tait equation with cooling rates and proposes a solution that guarantees a correct transition from the liquid to the solid phase, even at high cooling rates and pressures. The results demonstrated a realistic PVT curve across a wide range of cooling rates and high pressures. The model was put to the test using a 3D tetrahedron meshed calculation model in the injection molding simulation. This study marks a significant step forward in the simulation of injection molding processes, as it successfully bridges the gap between real material properties and simplified simulation, paving the way for more accurate and efficient simulations in the future.
Collapse
Affiliation(s)
- Thomas Willerer
- Chair of Carbon Composites, Technical University of Munich, 85748 Garching, Germany
- Webasto SE, Kraillinger Straße 5, 82131 Stockdorf, Germany
| | - Thomas Brinkmann
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - Klaus Drechsler
- Chair of Carbon Composites, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
3
|
Bölle S, Alms J, Weihermüller M, Robisch M, Wipperfürth J, Hopmann C, Dahlmann R. Modelling of the melting point shift in semi-crystalline thermoplastics dependent on prior cooling rate and heating rate. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Song S, Jiang J, Nikbin E, Howe JY, Manners I, Winnik MA. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem Sci 2022; 13:396-409. [PMID: 35126972 PMCID: PMC8729813 DOI: 10.1039/d1sc05937h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies. In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.![]()
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| |
Collapse
|
5
|
Seidi F, Yazdi MK, Jouyandeh M, Habibzadeh S, Munir MT, Vahabi H, Bagheri B, Rabiee N, Zarrintaj P, Saeb MR. Crystalline polysaccharides: A review. Carbohydr Polym 2022; 275:118624. [PMID: 34742405 DOI: 10.1016/j.carbpol.2021.118624] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The biodegradability and mechanical properties of polysaccharides are dependent on their architecture (linear or branched) as well as their crystallinity (size of crystals and crystallinity percent). The amount of crystalline zones in the polysaccharide significantly governs their ultimate properties and applications (from packaging to biomedicine). Although synthesis, characterization, and properties of polysaccharides have been the subject of several review papers, the effects of crystallization kinetics and crystalline domains on the properties and application have not been comprehensively addressed. This review places focus on different aspects of crystallization of polysaccharides as well as applications of crystalline polysaccharides. Crystallization of cellulose, chitin, chitosan, and starch, as the main members of this family, were discussed. Then, application of the aforementioned crystalline polysaccharides and nano-polysaccharides as well as their physical and chemical interactions were overviewed. This review attempts to provide a complete picture of crystallization-property relationship in polysaccharides.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
6
|
Kade JC, Tandon B, Weichhold J, Pisignano D, Persano L, Luxenhofer R, Dalton PD. Melt electrowriting of poly(vinylidene fluoride‐
co
‐trifluoroethylene). POLYM INT 2021. [DOI: 10.1002/pi.6272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juliane C Kade
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg Würzburg Germany
| | - Biranche Tandon
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg Würzburg Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR USA
| | - Jan Weichhold
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg Würzburg Germany
| | - Dario Pisignano
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore Pisa Italy
- Dipartimento di Fisica Università di Pisa Pisa Italy
| | - Luana Persano
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore Pisa Italy
| | - Robert Luxenhofer
- Polymer Functional Materials, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Würzburg Germany
- Soft Matter Chemistry, Department Chemistry, Helsinki Institute of Sustainability Science Faculty of Science, University of Helsinki Helsinki Finland
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg Würzburg Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR USA
| |
Collapse
|
7
|
Lapuk SE, Mukhametzyanov TA, Schick C, Gerasimov AV. Crystallization kinetics and glass-forming ability of rapidly crystallizing drugs studied by Fast Scanning Calorimetry. Int J Pharm 2021; 599:120427. [PMID: 33662469 DOI: 10.1016/j.ijpharm.2021.120427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
The use of the amorphous forms of drugs is a modern approach for the enhancement of bioavailability. At the same time, the high cooling rate needed to obtain the metastable amorphous state often prevents its investigation using conventional laboratory methods such as differential scanning calorimetry, X-ray powder diffractometry. One of the ways to overcome this problem may be the application of Fast Scanning Calorimetry. This method allows direct determination of the critical cooling rate of the melt and kinetic parameters of the crystallization for bad glass formers. In the present work, the amorphous states of dopamine hydrochloride and atenolol were created using Fast Scanning Calorimetry for the first time. Critical cooling rates and glass transition temperatures of these drugs were determined. Based on the values of the kinetic fragility parameter, dopamine hydrochloride glass can be considered strong, while atenolol glass is moderately strong. Both model-based and model-free approaches were employed to determine the kinetic parameters of cold crystallization of dopamine and atenolol. The results were compared with the data from isothermal crystallization experiments. The Nakamura crystallization model provides the best description of the crystallization process and can be used to predict the long term stability of the amorphous forms of the drugs. The presented approaches may find applications in predicting the storage time and choosing the optimal storage conditions of the amorphous drugs prone to crystallization.
Collapse
Affiliation(s)
- S E Lapuk
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008, Kremlevskaya, 18, Kazan, Russia
| | - T A Mukhametzyanov
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008, Kremlevskaya, 18, Kazan, Russia
| | - C Schick
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008, Kremlevskaya, 18, Kazan, Russia
| | - A V Gerasimov
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008, Kremlevskaya, 18, Kazan, Russia.
| |
Collapse
|
8
|
Schawe JEK, Wrana C. Competition between Structural Relaxation and Crystallization in the Glass Transition Range of Random Copolymers. Polymers (Basel) 2020; 12:polym12081778. [PMID: 32784476 PMCID: PMC7465651 DOI: 10.3390/polym12081778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Structural relaxation in polymers occurs at temperatures in the glass transition range and below. At these temperatures, crystallization is controlled by diffusion and nucleation. A sequential occurrence of structural relaxation, nucleation, and crystallization was observed for several homopolymers during annealing in the range of the glass transition. It is known from the literature that all of these processes are strongly influenced by geometrical confinements. The focus of our work is copolymers, in which the confinements are caused by the random sequence of monomer units in the polymer chain. We characterize the influence of these confinements on structure formation and relaxation in the vicinity of the glass transition. The measurements were performed with a hydrogenated nitrile-butadiene copolymer (HNBR). The kinetics of the structural relaxation and the crystallization was measured using fast differential scanning calorimetry (FDSC). This technique was selected because of the high sensitivity, the fast cooling rates, and the high time resolution. Crystallization in HNBR causes a segregation of non-crystallizable segments in the macromolecule. This yields a reduction in mobility in the vicinity of the formed crystals and as a consequence an increased amount of so-called "rigid amorphous fraction" (RAF). The RAF can be interpreted as self-assembled confinements, which limit and control the crystallization. An analysis of the crystallization and the relaxation shows that the kinetic of both is identical. This means that the Kohlrausch exponent of relaxation and the Avrami exponent of crystallization are identical. Therefore, the crystallization is not controlled by nucleation but by diffusion and is terminated by the formation of RAF.
Collapse
Affiliation(s)
- Jürgen E. K. Schawe
- Mettler-Toledo GmbH—Analytical, Heuwinkelstrasse 3, 8606 Nänikon, Switzerland
- Correspondence:
| | - Claus Wrana
- Compounds AG, Barzloostrasse 1, 8330 Pfäffikon, Switzerland;
| |
Collapse
|
9
|
Schawe JE. Identification of three groups of polymers regarding their non-isothermal crystallization kinetics. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
|
11
|
Sedov I, Magsumov T, Abdullin A, Yarko E, Mukhametzyanov T, Klimovitsky A, Schick C. Influence of the Cross-Link Density on the Rate of Crystallization of Poly(ε-Caprolactone). Polymers (Basel) 2018; 10:E902. [PMID: 30960827 PMCID: PMC6404166 DOI: 10.3390/polym10080902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
Cross-linked poly(ε-caprolactone) (PCL) is a smart biocompatible polymer exhibiting two-way shape memory effect. PCL samples with different cross-link density were synthesized by heating the polymer with various amounts of radical initiator benzoyl peroxide (BPO). Non-isothermal crystallization kinetics was characterized by means of conventional differential scanning calorimetry (DSC) and fast scanning calorimetry (FSC). The latter technique was used to obtain the dependence of the degree of crystallinity on the preceding cooling rate by following the enthalpies of melting for each sample. It is shown that the cooling rate required to keep the cooled sample amorphous decreases with increasing cross-link density, i.e., crystallization process slows down monotonically. Covalent bonds between polymer chains impede the crystallization process. Consequently, FSC can be used as a rather quick and low sample consuming method to estimate the degree of cross-linking of PCL samples.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Timur Magsumov
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Albert Abdullin
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Egor Yarko
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Timur Mukhametzyanov
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Alexander Klimovitsky
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
| | - Christoph Schick
- Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia.
- Institute of Physics and Competence Centre CALOR, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany.
| |
Collapse
|
12
|
Furushima Y, Schick C, Toda A. Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshitomo Furushima
- Materials Characterization Laboratories, Toray Research Center Inc.Otsu Shiga 520‐8567 Japan
| | - Christoph Schick
- University of Rostock, Institute of Physics and Competence Centre CALOR18059 Rostock Germany
- Kazan Federal UniversityKazan 420008 Russian Federation
| | - Akihiko Toda
- Graduate school of Integrated Arts and SciencesHiroshima UniversityHigashi‐Hiroshima 739‐8521 Japan
| |
Collapse
|
13
|
Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: Carbon nanotubes in polypropylene. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ji E, Pellerin V, Rubatat L, Grelet E, Bousquet A, Billon L. Self-Assembly of Ionizable “Clicked” P3HT-b-PMMA Copolymers: Ionic Bonding Group/Counterion Effects on Morphology. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Eunkyung Ji
- IPREM
CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de l’Adour, Hélioparc, 2 avenue Président
Angot, 64053 Pau
Cedex 9, France and
| | - Virginie Pellerin
- IPREM
CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de l’Adour, Hélioparc, 2 avenue Président
Angot, 64053 Pau
Cedex 9, France and
| | - Laurent Rubatat
- IPREM
CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de l’Adour, Hélioparc, 2 avenue Président
Angot, 64053 Pau
Cedex 9, France and
| | - Eric Grelet
- CNRS,
Centre de Recherche Paul-Pascal, Université de Bordeaux, 115 Avenue
Schweitzer, 33600 Pessac, France
| | - Antoine Bousquet
- IPREM
CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de l’Adour, Hélioparc, 2 avenue Président
Angot, 64053 Pau
Cedex 9, France and
| | - Laurent Billon
- IPREM
CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de l’Adour, Hélioparc, 2 avenue Président
Angot, 64053 Pau
Cedex 9, France and
| |
Collapse
|
15
|
Dietz W. Effect of cooling on crystallization and microstructure of polypropylene. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|