1
|
Wang F, Qu T, Yang H, Yang H, Ou Y, Zhang Q, Cheng F, Hu F, Liu H, Xu Z, Gong C. Fabrication of Dual-Functional Bacterial-Cellulose-Based Composite Anion Exchange Membranes with High Dimensional Stability and Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2751-2762. [PMID: 38178809 DOI: 10.1021/acsami.3c15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Anion exchange membranes (AEMs) are increasingly becoming a popular research area due to their ability to function with nonprecious metals in electrochemical devices. Nevertheless, there is a challenge to simultaneously optimize the dimensional stability and ionic conductivity of AEMs due to the "trade-off" effect. Herein, we adopted a novel strategy of combining filling and cross-linking using functionalized bacterial cellulose (PBC) as a dual-functional porous support and brominated poly(phenylene oxide) (Br-PPO) as the cross-linking agent and filler. The PBC nanofiber framework together with cross-linking can provide a reliable mechanical support for the subsequent filled polymer, thus improving the mechanical properties and effectively limiting the size change of the final quaternized-PPO (QPPO)-filled PBC composite membrane. The composite membrane showed a very low swelling ratio of only 10.35%, even at a high water uptake (81.83% at 20 °C). Moreover, the existence of multiple -NR3+ groups in the cross-link bonds between BC and Br-PPO can provide extra OH- ion transport sites, contributing to the increase in ionic conductivity. The final membrane demonstrated a hydroxide ion conductivity of 62.58 mS cm-1, which was remarkably higher than that of the pure QPPO membrane by up to 235.93% (80 °C). The successful preparation of the PBC3/QPPO membrane provides an effective avenue to tackle the trade-off effect through a dual-functional strategy.
Collapse
Affiliation(s)
- Fei Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Qu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Huiyu Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Haiyang Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Quanyuan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Fan Cheng
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fuqiang Hu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| |
Collapse
|
2
|
Effect of the Flame Retardants and Glass Fiber on the Polyamide 66/Polyphenylene Oxide Composites. MATERIALS 2022; 15:ma15030813. [PMID: 35160757 PMCID: PMC8837021 DOI: 10.3390/ma15030813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/07/2022]
Abstract
In this work, polyamide 66/polyphenylene oxide (PA66/PPO) composites, including the flame retardants 98 wt% aluminum diethylphosphinate + 2 wt% polydimethylsiloxane (P@Si), Al(OH)3-coated red phosphorus (RP*), and glass fiber (GF), were systematically studied, respectively. The limiting oxygen index (LOI), UL-94 vertical burning level, and thermal and mechanical properties of the PA66/PPO composites were characterized. The results showed that the P@Si and RP flame retardants both improved the LOI value and UL-94 vertical burning level of the PA66/PPO composites, and PA66/PPO composites passed to the UL-94 V-0 level when the contents of P@Si and RP* flame retardants were 16 wt% and 8 wt%. On the other hand, the mechanical properties of the PA66/PPO composites were reduced from a ductile to a brittle fracture mode. The addition of GF effectively made up for these defects and improved the mechanical properties of the PA66/PPO composites containing the P@Si and RP*, but it did not change the fracture mode. P@Si and RP* flame retardants improved the thermal decomposition of PA66/PPO/GF composites and reduced the maximum mass loss rates, showing that the PA66/PPO/GF composites containing the P@Si and RP* flame retardants could be used in higher-temperature fields.
Collapse
|
3
|
Membrane-Less Ethanol Electrooxidation over Pd-M (M: Sn, Mo and Re) Bimetallic Catalysts. Catalysts 2021. [DOI: 10.3390/catal11050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of the addition of three oxophilic co-metals (Sn, Mo and Re) on the electrochemical performance of Pd in the ethanol oxidation reaction (EOR) was investigated by performing half-cell and membrane-less electrolysis cell experiments. While the additions of Sn and Re were found to improve significantly the EOR performance of Pd, Mo produced no significant promotional effect. When added in significant amounts (50:50 ratio), Sn and Re produced a 3–4 fold increase in the mass-normalized oxidation peak current as compared to the monometallic Pd/C material. Both the electrochemical surface area and the onset potential also improved upon addition of Sn and Re, although this effect was more evident for Sn. Cyclic voltammetry (CV) measurements revealed a higher ability of Sn for accommodating OH- species as compared to Re, which could explain these results. Additional tests were carried out in a membrane-less electrolysis system. Pd50Re50/C and Pd50Sn50/C both showed higher activity than Pd/C in this system. Chronopotentiometric measurements at constant current were carried out to test the stability of both catalysts in the absence of a membrane. Pd50Sn50/C was significantly more stable than Pd50Re50/C, which showed a rapid increase in the potential with time. Despite operating in the absence of a membrane, both catalysts generated a high-purity (e.g., 99.99%) hydrogen stream at high intensities and low voltages. These conditions could lead to significant energy consumption savings compared to commercial water electrolyzers.
Collapse
|
4
|
Chu JY, Lee KH, Kim AR, Yoo DJ. Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Wang L, Liu Y, Wang J. Crosslinked anion exchange membrane with improved membrane stability and conductivity for alkaline fuel cells. J Appl Polym Sci 2019. [DOI: 10.1002/app.48169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lidan Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans‐Media Pollution, College of Environmental Science and EngineeringNankai University Tianjin 300071 China
| | - Ying Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans‐Media Pollution, College of Environmental Science and EngineeringNankai University Tianjin 300071 China
| | - Jianyou Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans‐Media Pollution, College of Environmental Science and EngineeringNankai University Tianjin 300071 China
| |
Collapse
|
6
|
Msomi PF, Nonjola P, Ndungu PG, Ramontja J. Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1532-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Msomi PF, Nonjola P, Ndungu PG, Ramonjta J. Quaternized poly(2.6 dimethyl-1.4 phenylene oxide)/polysulfone blend composite membrane doped with ZnO-nanoparticles for alkaline fuel cells. J Appl Polym Sci 2017. [DOI: 10.1002/app.45959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Patrick Nonjola
- Council of Science and Industrial Research; Brummeria Pretoria South Africa
| | | | - James Ramonjta
- Department of Applied Chemistry; University of Johannesburg; Johannesburg South Africa
| |
Collapse
|