1
|
Dumbadze N, Viviani M, Kreuer KD, Titvinidze G. A simple and cost-efficient route to prepare sulfonated dihalo-monomers for synthesizing sulfonated aromatic PEMs. RSC Adv 2024; 14:37272-37277. [PMID: 39575373 PMCID: PMC11580002 DOI: 10.1039/d4ra06283c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
We present a simple and cost-efficient route for the preparation of sulfonated dihalo-monomers for the synthesis of hydrocarbon ionomers. After conventional monomer sulfonation, excess sulfuric acid is quantitatively removed by neutralization with BaCO3. This leads to the precipitation of excess H2SO4 as insoluble BaSO4, which is easily separated from the sulfonated monomers in their soluble Ba-forms by filtration. Compared to conventional methods, the proposed approach leads to higher yields, drastically reduces the number of purification steps, and can easily be expanded to the preparation of other sulfonated monomers. The specific monomers presented here are suitable for the preparation of sulfonated polyarylenes and sulfonated polyphenylenes.
Collapse
Affiliation(s)
- Nodar Dumbadze
- Agricultural University of Georgia 240 David Aghmashenebeli Alley Tbilisi 0159 Georgia
| | - Marco Viviani
- Hahn-Schickard Gesellschaft für Angewandte Forschung e.V Georges-Koehler-Allee, 103 79110 Freiburg Im Breisgau Germany
| | - Klaus-Dieter Kreuer
- Hahn-Schickard Gesellschaft für Angewandte Forschung e.V Georges-Koehler-Allee, 103 79110 Freiburg Im Breisgau Germany
- Max-Planck-Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany
| | - Giorgi Titvinidze
- Agricultural University of Georgia 240 David Aghmashenebeli Alley Tbilisi 0159 Georgia
- Hahn-Schickard Gesellschaft für Angewandte Forschung e.V Georges-Koehler-Allee, 103 79110 Freiburg Im Breisgau Germany
| |
Collapse
|
2
|
Künzel-Tenner A, Kirsch C, Dolynchuk O, Rößner L, Wach M, Kempe F, von Unwerth T, Lederer A, Sebastiani D, Armbrüster M, Sommer M. Proton-Conducting Membranes from Polyphenylenes Containing Armstrong's Acid. Macromolecules 2024; 57:1238-1247. [PMID: 38370913 PMCID: PMC10870345 DOI: 10.1021/acs.macromol.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
This study demonstrates the use of 1,5-naphthalenedisulfonic acid as a suitable building block for the efficient and economic preparation of alternating sulfonated polyphenylenes with high ion-exchange capacity (IEC) via Suzuki polycondensation. Key to large molar masses is the use of an all-meta-terphenyl comonomer instead of m-phenyl, the latter giving low molar masses and brittle materials. A protection/deprotection strategy for base-stable neopentyl sulfonates is successfully implemented to improve the solubility and molar mass of the polymers. Solution-based deprotection of polyphenylene neopentyl sulfonates at 150 °C in dimethylacetamide eliminates isopentylene quantitatively, resulting in membranes with high IEC (2.93 mequiv/g) and high proton conductivity (σ = 138 mS/cm). Water solubility of these copolymers with high IEC requires thermal cross-linking to prevent their dissolution under operating conditions. By balancing the temperature and time of the cross-linking process, water uptake can be restricted to 50 wt %, retaining an IEC of 2.33 mequiv/g and a conductivity of 85 mS/cm. Chemical stability is addressed by treatment of the membranes under Fenton's conditions and by considering barrier heights for desulfonation using density functional theory (DFT) calculations. The DFT results suggest that 1,5-disulfonated naphthalenes are at least as stable as sulfonated polyphenylenes against desulfonation.
Collapse
Affiliation(s)
- Andy Künzel-Tenner
- Institut
für Chemie, Polymerchemie, Technische
Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Christoph Kirsch
- Institut
für Chemie, Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Oleksandr Dolynchuk
- Experimental
Polymer Physics, Martin Luther University
Halle-Wittenberg, Von-Danckelmann-Platz
3, 06120 Halle, Germany
| | - Leonard Rößner
- Institut
für Chemie, Materialien für Innovative Energiekonzepte, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Maxime Wach
- Institut
für Automobilforschung, Technische
Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Fabian Kempe
- Institut
für Chemie, Polymerchemie, Technische
Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Thomas von Unwerth
- Institut
für Automobilforschung, Technische
Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Albena Lederer
- Leibniz
Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag
X1, 7602 Matieland, South Africa
| | - Daniel Sebastiani
- Institut
für Chemie, Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Marc Armbrüster
- Institut
für Chemie, Materialien für Innovative Energiekonzepte, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Michael Sommer
- Institut
für Chemie, Polymerchemie, Technische
Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
- Forschungszentrum
MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| |
Collapse
|
3
|
Zhang W, Liu M, Gu X, Shi Y, Deng Z, Cai N. Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers. Chem Rev 2023. [PMID: 36749705 DOI: 10.1021/acs.chemrev.2c00573] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since severe global warming and related climate issues have been caused by the extensive utilization of fossil fuels, the vigorous development of renewable resources is needed, and transformation into stable chemical energy is required to overcome the detriment of their fluctuations as energy sources. As an environmentally friendly and efficient energy carrier, hydrogen can be employed in various industries and produced directly by renewable energy (called green hydrogen). Nevertheless, large-scale green hydrogen production by water electrolysis is prohibited by its uncompetitive cost caused by a high specific energy demand and electricity expenses, which can be overcome by enhancing the corresponding thermodynamics and kinetics at elevated working temperatures. In the present review, the effects of temperature variation are primarily introduced from the perspective of electrolysis cells. Following an increasing order of working temperature, multidimensional evaluations considering materials and structures, performance, degradation mechanisms and mitigation strategies as well as electrolysis in stacks and systems are presented based on elevated temperature alkaline electrolysis cells and polymer electrolyte membrane electrolysis cells (ET-AECs and ET-PEMECs), elevated temperature ionic conductors (ET-ICs), protonic ceramic electrolysis cells (PCECs) and solid oxide electrolysis cells (SOECs).
Collapse
Affiliation(s)
- Weizhe Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Menghua Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Xin Gu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yixiang Shi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Zhanfeng Deng
- Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Ningsheng Cai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
4
|
Katcharava Z, Saatkamp T, Muenchinger A, Dumbadze N, Kreuer K, Schuster M, Titvinidze G. Optimized step‐growth polymerization of water‐insoluble, highly sulfonated poly(phenylene sulfone). POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Torben Saatkamp
- Max Planck Institute for Solid State Research Stuttgart Germany
| | | | | | | | | | | |
Collapse
|
5
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis. MEMBRANES 2021; 11:membranes11110861. [PMID: 34832090 PMCID: PMC8624943 DOI: 10.3390/membranes11110861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
In order to reduce the burden on the environment, there is a need to develop non-fluorinated electrolyte membranes as alternatives to fluorinated electrolyte membranes, and water electrolysis using hydrocarbon-based electrolyte membranes has been studied in recent years. In this paper, for the first time, we report elevated-temperature water electrolysis properties of crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes prepared by sulfonation and crosslinking of hydrocarbon-based PPSU engineering plastics. The sulfone groups of the CSPPSU membrane in water were stable at 85 °C (3600 h) and 150 °C (2184 h). In addition, the polymer structure of the CSPPSU membrane was stable during small-angle X-ray scattering (SAXS) measurements from room temperature to 180 °C. A current density of 456 mA/cm2 was obtained at 150 °C and 1.8 V in water electrolysis using the CSPPSU membrane and IrO2/Ti as the catalytic electrode for oxygen evolution. The stability of the CSPPSU membrane at elevated temperatures with time was evaluated. There were some issues in the assembly of the CSPPSU membrane and the catalytic electrode. However, the CSPPSU membrane has the potential to be used as an electrolyte membrane for elevated-temperature water electrolysis.
Collapse
|
7
|
Hu Y, Yan L, Yue B. Chain-scission degradation mechanisms during sulfonation of aromatic polymers for PEMFC applications. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Effect of Polyhedral Silsesquioxane Functionalized Sulfonic Acid Groups Incorporated Into Highly Sulfonated Polyphenylsulfone as Proton-Conducting Membrane. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Kim JD, Matsushita S, Tamura K. Crosslinked Sulfonated Polyphenylsulfone-Vinylon (CSPPSU-vinylon) Membranes for PEM Fuel Cells from SPPSU and Polyvinyl Alcohol (PVA). Polymers (Basel) 2020; 12:polym12061354. [PMID: 32560108 PMCID: PMC7361900 DOI: 10.3390/polym12061354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
A crosslinked sulfonated polyphenylsulfone (CSPPSU) polymer and polyvinyl alcohol (PVA) were thermally crosslinked; then, a CSPPSU-vinylon membrane was synthesized using a formalization reaction. Its use as an electrolyte membrane for fuel cells was investigated. PVA was synthesized from polyvinyl acetate (PVAc), using a saponification reaction. The CSPPSU-vinylon membrane was synthesized by the addition of PVA (5 wt%, 10 wt%, 20 wt%), and its chemical, mechanical, conductivity, and fuel cell properties were studied. The conductivity of the CSPPSU-10vinylon membrane is higher than that of the CSPPSU membrane, and a conductivity of 66 mS/cm was obtained at 120 °C and 90% RH (relative humidity). From a fuel cell evaluation at 80 °C, the CSPPSU-10vinylon membrane has a higher current density than CSPPSU and Nafion212 membranes, in both high (100% RH) and low humidification (60% RH). By using a CSPPSU-vinylon membrane instead of a CSPPSU membrane, the conductivity and fuel cell performance improved.
Collapse
Affiliation(s)
- Je-Deok Kim
- Polymer Electrolyte Fuel Cell Group, Global Research Center for Environmental and Energy Based on Nanomaterials Science (GREEN),Tsukuba Ibaraki 305-0044, Japan;
- Hydrogen Production Materials Group, Center for Green Research on Energy and Environmental Materials, Tsukuba Ibaraki 305-0044, Japan
- Functional Clay Materials Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Correspondence: ; Tel.: +81-29-860-4764; Fax: +81-29-860-4984
| | - Satoshi Matsushita
- Polymer Electrolyte Fuel Cell Group, Global Research Center for Environmental and Energy Based on Nanomaterials Science (GREEN),Tsukuba Ibaraki 305-0044, Japan;
| | - Kenji Tamura
- Functional Clay Materials Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
| |
Collapse
|
10
|
Kim JD, Ohira A, Nakao H. Chemically Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for PEM Fuel Cells. MEMBRANES 2020; 10:membranes10020031. [PMID: 32085526 PMCID: PMC7074308 DOI: 10.3390/membranes10020031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
Sulfonated polyphenylsulfone (SPPSU) with a high ion exchange capacity (IEC) was synthesized using commercially available polyphenylsulfone (PPSU), and a large-area (16 × 18 cm2) crosslinked sulfonated polyphenylsulfone (CSPPSU) membrane was prepared. In addition, we developed an activation process in which the membrane was treated with alkaline and acidic solutions to remove sulfur dioxide (SO2), which forms as a byproduct during heat treatment. CSPPSU membranes obtained using this activation method had high thermal, mechanical and chemical stabilities. In I-ViR free studies for fuel cell evaluation, high performances similar to those using Nafion were obtained. In addition, from the hydrogen (H2) gas crossover characteristics, the durability is much better than that of a Nafion212 membrane. In the studies evaluating the long-term stabilities by using a constant current method, a stability of 4000 h was obtained for the first time. These results indicate that the CSPPSU membrane obtained by using our activation method is promising as a polymer electrolyte membrane.
Collapse
Affiliation(s)
- Je-Deok Kim
- Hydrogen Production Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Correspondence:
| | - Akihiro Ohira
- Energy Storage Technology Group, Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan;
| | - Hidenobu Nakao
- Hydrogen Materials Engineering Group, Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan;
| |
Collapse
|
11
|
Han J, Kim K, Kim J, Kim S, Choi SW, Lee H, Kim JJ, Kim TH, Sung YE, Lee JC. Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|