1
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
3
|
Lei Z, Tang Q, Ju Y, Lin Y, Bai X, Luo H, Tong Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:695-711. [DOI: 10.1080/09205063.2020.1713451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhentao Lei
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuju Tang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanshan Ju
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghui Lin
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaowen Bai
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haipeng Luo
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Luo H, Lin Y, Tang Q, Hu W, Wang Y, Lei Z, Tong Z. Disassembly of Crystalline Platelets of an Amphiphilic Triblock Copolymer Mediated by Varying pH and Organic Diacids. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
- Institute of Smart Fiber MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yonghui Lin
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Wei Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
- Institute of Smart Fiber MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yaping Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
- Institute of Smart Fiber MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
- Institute of Smart Fiber MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationDepartment of Polymer MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
- Institute of Smart Fiber MaterialsZhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
5
|
Zhong J, Luo H, Tang Q, Lei Z, Tong Z. Counterion-Mediated Self-Assembly of Ion-Containing Block Copolymers on the Basis of the Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
6
|
Zhong J, Tang Q, Ju Y, Lin Y, Bai X, Zhou J, Luo H, Lei Z, Tong Z. Redox and pH responsive polymeric vesicles constructed from a water-soluble pillar[5]arene and a paraquat-containing block copolymer for rate-tunable controlled release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:202-214. [PMID: 30587090 DOI: 10.1080/09205063.2018.1561814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herein, for rate-tunable controlled release, pH and redox dual responsive polymeric vesicles were constructed based on host-guest interaction between a water soluble pillar[5]arene (WP5) and a paraquat-containing block copolymer (BCP) in water. The yielding polymeric vesicles can be further applied in the controlled release of a hydrophilic model drug, doxorubicin hydrochloride (DOX). The drug release rate is regulated depending on the type of single stimulus or the combination of two stimuli. Meanwhile, DOX-loaded polymeric vesicles present anticancer activity in vitro comparable to free DOX under the studied conditions, which may be important for applications in the therapy of cancers as a controlled-release drug carrier.
Collapse
Affiliation(s)
- Jiaxing Zhong
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Qiuju Tang
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Yanshan Ju
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Yonghui Lin
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Xiaowen Bai
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Junyi Zhou
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Haipeng Luo
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Zhentao Lei
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Zaizai Tong
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| |
Collapse
|
7
|
Luo H, Tang Q, Zhong J, Lei Z, Zhou J, Tong Z. Interplay of Solvation and Size Effects Induced by the Counterions in Ionic Block Copolymers on the Basis of Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Junyi Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
10
|
Tong Z, Zhou J, Zhong J, Tang Q, Lei Z, Luo H, Ma P, Liu X. Glucose- and H 2O 2-Responsive Polymeric Vesicles Integrated with Microneedle Patches for Glucose-Sensitive Transcutaneous Delivery of Insulin in Diabetic Rats. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20014-20024. [PMID: 29787231 DOI: 10.1021/acsami.8b04484] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, a dual-responsive insulin delivery device by integrating glucose- and H2O2-responsive polymeric vesicles (PVs) with transcutaneous microneedles (MNs) has been designed. This novel microneedle delivery device achieves a goal of fast response, excellent biocompatibility, and painless administration. The PVs are self-assembled from a triblock copolymer including poly(ethylene glycol), poly(phenylboronic acid) (glucose-sensitive block), and poly(phenylboronic acid pinacol ester) (H2O2-sensitive block). After loading with insulin and glucose oxidase (GO x), the drug-loaded PVs display a basal insulin release as well as a promoted insulin release in response to hyperglycemic states. The insulin release rate responds quickly to elevated glucose and can be further promoted by the incorporated GO x, which will generate the H2O2 at high glucose levels and further break the chemical links of phenylboronic acid pinacol ester group. Finally, the transdermal delivery of insulin to the diabetic rats ((insulin + GO x)-loaded MNs) presents an effective hypoglycemic effect compared to that of subcutaneous injection or only insulin-loaded MNs, which indicates the as-prepared MNs insulin delivery system could be of great importance for the applications in the therapy of diabetes.
Collapse
Affiliation(s)
- Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education , Hangzhou 310018 , China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang) , Hangzhou 310018 , China
| | | | | | | | | | | | - Pianpian Ma
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education , Hangzhou 310018 , China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang) , Hangzhou 310018 , China
| | - Xiangdong Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education , Hangzhou 310018 , China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang) , Hangzhou 310018 , China
| |
Collapse
|