1
|
Zhang Z, Shen C, Zhang P, Xu S, Kong L, Liang X, Li C, Qiu X, Huang J, Cui X. Fundamental, mechanism and development of hydration lubrication: From bio-inspiration to artificial manufacturing. Adv Colloid Interface Sci 2024; 327:103145. [PMID: 38615561 DOI: 10.1016/j.cis.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Friction and lubrication are ubiquitous in all kinds of movements and play a vital role in the smooth operation of production machinery. Water is indispensable both in the lubrication systems of natural organisms and in hydration lubrication systems. There exists a high degree of similarity between these systems, which has driven the development of hydration lubrication from biomimetic to artificial manufacturing. In particular, significant advancements have been made in the understanding of the mechanisms of hydration lubrication over the past 30 years. This enhanced understanding has further stimulated the exploration of biomimetic inspiration from natural hydration lubrication systems, to develop novel artificial hydration lubrication systems that are cost-effective, easily transportable, and possess excellent capability. This review summarizes the recent experimental and theoretical advances in the understanding of hydration-lubrication processes. The entire paper is divided into three parts. Firstly, surface interactions relevant to hydration lubrication are discussed, encompassing topics such as hydrogen bonding, hydration layer, electric double layer force, hydration force, and Stribeck curve. The second part begins with an introduction to articular cartilage in biomaterial lubrication, discussing its compositional structure and lubrication mechanisms. Subsequently, three major categories of bio-inspired artificial manufacturing lubricating material systems are presented, including hydrogels, polymer brushes (e.g., neutral, positive, negative and zwitterionic brushes), hydration lubricant additives (e.g., nano-particles, polymers, ionic liquids), and their related lubrication mechanism is also described. Finally, the challenges and perspectives for hydration lubrication research and materials development are presented.
Collapse
Affiliation(s)
- Zekai Zhang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Chaojie Shen
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Peipei Zhang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Shulei Xu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Lingchao Kong
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiubing Liang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chengcheng Li
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiaoyong Qiu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China.
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China.
| |
Collapse
|
2
|
Abstract
Water-based lubricants (WBLs) have been at the forefront of recent research, due to the abundant availability of water at a low cost. However, in metallic tribo-systems, WBLs often exhibit poor performance compared to petroleum-based lubricants. Research and development indicate that nano-additives improve the lubrication performance of water. Some of these additives could be categorized as solid nanoparticles, ionic liquids, and bio-based oils. These additives improve the tribological properties and help to reduce friction, wear, and corrosion. This review explored different water-based lubricant additives and summarized their properties and performances. Viscosity, density, wettability, and solubility are discussed to determine the viability of using water-based nano-lubricants compared to petroleum-based lubricants for reducing friction and wear in machining. Water-based liquid lubricants also have environmental benefits over petroleum-based lubricants. Further research is needed to understand and optimize water-based lubrication for tribological systems completely.
Collapse
|
3
|
Function Synergy of Cross-Linked Cationic PVA Polymer to AMPS-Type Fluid Loss Additive Used for Cement-Based Material. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5968318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this research, a kind of 2-acrylamido-2-methylpropanesulfonic acid sodium salt- (AMPS-Na-) type copolymer additive, the fluid loss additive (FLA), named as FLA A additive, was used for research. The performance of FLA A was tested and found to fail in the effective control of free water and to hinder the hydration process for delaying the breaking of the early hydration shell. The reason for it was the absorbed behavior and chelating effect of the AMPS-Na unit to Ca2+ hydrating cement particles. Thus, a cationic polyvinyl alcohol (PVA) polymer, modified by glyoxal and boric acid, was discovered due to its excellence in associating with the FLA A additive for controlling the free cement-based material water amount and preventing the chelating effect of FLA A chains on the surface of the cement-based material. Glyoxal/boric acid-modified polyvinyl alcohol, abbreviated as PVAGB or PVA-G-B, was with special molecular properties, i.e., positive ZETA (ζ) potential characteristics and cross-linked molecular structure. Due to competitive absorbed behavior of glyoxal-modified hydroxyl groups and free Ca2+ released by the hydration product, the chelating effect of AMPS-Na units to Ca2+ was weakened and the possibility of FLA A chains being absorbed to the surface of the cement-based material was decreased. Then, the formation of a complete fluid loss system was obtained; i.e., the fluid loss volume decreased to less than 50 mL at 30°C and 108 mL at 80°C with 0.2 percentage by weight of cement (%BWOC) of PVAGB and 0.50%BWOC (percentage by weight of cement) of FLA A. Besides, the hydration process of cement-based material was accelerated due to formation of more C-S-H gels in the early hydration period. As a result, the cement-based material not only showed no worse compressive-strength retrogression but also showed a stable 28-day compressive strength of 28 MPa.
Collapse
|