1
|
Liu Y, Zhang Y, Yang Q, Yu Z, He M, Zhu Y, Fu X, Meng F, Ma Q, Kong L, Pan S, Che Y. Tunicate cellulose nanocrystal reinforced multifunctional hydrogel with super flexible, fatigue resistant, antifouling and self-adhesive capability for effective wound healing. Int J Biol Macromol 2024; 277:134337. [PMID: 39111482 DOI: 10.1016/j.ijbiomac.2024.134337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Hydrogels as skin wound dressings have been extensively studied owing to their good flexibility and biocompatibility. Nevertheless, the mechanical performance, adhesive capability, antifouling and antibacterial properties of conventional hydrogels are still unsatisfactory, which hinder the application of hydrogel for cutaneous healing. Here, we developed a novel biocompatible multifunctional hydrogel with super flexible, fatigue resistant, antifouling and self-adhesive capability for effective wound healing, where naturally rigid polymers including quaternized chitosan (QCS) and Tunicate cellulose nanocrystals (TCNCs) are used as bioactive cross-linkers and reinforcers to endow the hydrogel with excellent mechanical and antibacterial property, and the synergistic contributions from the poly(acrylic acid/methacrylate anhydride dopamine/sulfobetaine methacrylate) (poly(AA/DMA/SBMA)) chains and QCS endow the hydrogel with excellent adhesive property, antioxidant, antifouling and pH-responsive sustained drug release capabilities. The optimized hydrogel exhibited high tensile strength (77.69 KPa), large tensile strain (889.9 %), large toughness (307.51KJ.m-3), high adhesive strength (35.57 KPa) and ideal compressive property. The in vivo infected full-thickness skin model demonstrated that the hydrogel with vanvomycin sustained release ability efficiently improved the granulation tissue formation, facilitating collagen deposition and reducing inflammatory expression, thus effectively accelerating wound healing. This superiorly skin-adhesive antibacterial biocompatible hydrogel appears to be a promising candidate for wound therapy.
Collapse
Affiliation(s)
- Yijie Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Qin Yang
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Zhongrui Yu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Mingtao He
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yifei Zhu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Xin Fu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Fanjun Meng
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Qinglin Ma
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
3
|
Wang T, Kang W, Yang H, Li Z, Fan H, Zheng W, Zhu T, Aidarova S, Gabdullin M. Water-soluble grafted sodium polyacrylate with low concentration: Synthesis and thermal properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Sakamoto Y, Nishimura T. Recent advances in the self-assembly of sparsely grafted amphiphilic copolymers in aqueous solution. Polym Chem 2022. [DOI: 10.1039/d2py01018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review describes the self-assembly of sparsely grafted amphiphilic copolymers and highlights the effects of structural factors and solvents on their self-assembly behaviour.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
6
|
Brugnoni M, Fink F, Scotti A, Richtering W. Synthesis and structure of temperature-sensitive nanocapsules. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04686-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe transport and systematic release of functional agents at specific areas are key challenges in various application fields. These make the development of micro- and nanocapsules, which allow for uptake, storage, and triggered release, of high interest. Hollow thermoresponsive microgels, cross-linked polymer networks with a solvent-filled cavity in their center, are promising candidates as triggerable nanocapsules, as they can adapt their size and shape to the environment. Their shell permeability can be controlled by temperature, while the cavity can serve as a storage place for guest species. Here, we present the synthesis and structural characterization of temperature-responsive microgels, which are deswollen at room temperature and swell upon moderate cooling, to facilitate potential encapsulation experiments. We present microgels made from poly(N-isopropylacrylamide-co-diacetone acrylamide), p(NIPAM-co-DAAM), possessing a volume phase transition temperature below room temperature. Their colloidal stability in the deswollen state can be enhanced by adding a swollen polymer shell made of poly(N-isopropylacrylamide), pNIPAM, as periphery. The synthesis of hollow double-shell microgels comprising a cavity surrounded by an inner p(NIPAM-co-DAAM) shell and an outer pNIPAM shell is established. The inner network enables the control of the shell permeability: the network is deswollen at room temperature and swells upon moderate cooling. The outer network guarantees for steric stability at room temperature. Light scattering techniques are employed for the characterization of the microgels. Form factor analysis reveals that the cavity of the nanocapsules persists at all swelling states, making it an ideal site for the storage of guest species.
Collapse
|
7
|
Tchameni AP, Xie B, Zhang H, Zhao L, Luo M, Wen J. Thermo-associating polymers based on cross-linked 2-acrylamido-methylpropane sulfonic acid, part A: Synthesis and solution behavior. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
de Lima BLB, Marques NDN, Villetti MA, Balaban RDC. HPAM-g
-PEOPPO: Rheological modifiers in aqueous media of high temperature and high ionic strength. J Appl Polym Sci 2019. [DOI: 10.1002/app.47453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bruna Luiza Batista de Lima
- Laboratório de Pesquisa em Petróleo - LAPET; Universidade Federal do Rio Grande do Norte; 59078970 Natal Rio Grande do Norte Brazil
| | - Nívia do Nascimento Marques
- Laboratório de Pesquisa em Petróleo - LAPET; Universidade Federal do Rio Grande do Norte; 59078970 Natal Rio Grande do Norte Brazil
| | - Marcos Antônio Villetti
- Laboratório de Espectroscopia de Polímeros - LEPOL; Universidade Federal de Santa Maria; 97105-900 Santa Maria Rio Grande do Sul Brazil
| | - Rosangela de Carvalho Balaban
- Laboratório de Pesquisa em Petróleo - LAPET; Universidade Federal do Rio Grande do Norte; 59078970 Natal Rio Grande do Norte Brazil
| |
Collapse
|