1
|
Khandal J, Dohare S, Dongsar TS, Gupta G, Alsayari A, Wahab S, Kesharwani P. Gelatin nanocarriers in oncology: A biocompatible strategy for targeted drug delivery. Int J Biol Macromol 2025; 310:143244. [PMID: 40250682 DOI: 10.1016/j.ijbiomac.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Cancer persists as a formidable global health crisis, with conventional therapies often compromised by systemic toxicity, poor tumor specificity, and therapeutic resistance. Nanotechnology has emerged as a transformative approach, leveraging nanoscale materials to enhance drug bioavailability, enable targeted delivery, and mitigate off-target effects. Among these innovations, gelatin-based nanoparticles (GNPs), derived from collagen and endorsed by the FDA have garnered significant attention as biocompatible, biodegradable nanocarriers uniquely suited for oncology applications. GNPs address critical extracellular barriers such as inefficient tumor penetration, rapid clearance, and nonspecific biodistribution by capitalizing on gelatin's intrinsic advantages: low immunogenicity, tumor microenvironment responsiveness (pH, enzymes, redox gradients), and tunable surface functionalization. This review highlights the versatility of GNPs in overcoming these challenges through advanced strategies like ligand-mediated targeting, combinatorial therapies, and size-transformable systems that enhance tumor accumulation and therapeutic precision. Case studies across lung, breast, skin, liver, colorectal, brain, and head/neck cancers demonstrate GNPs' ability to reduce IC50 values by 2 to 4-fold, achieve >90 % apoptosis in malignant cells, and minimize damage to healthy tissues. Despite the challenges in translating gelatin-based nanocarriers from preclinical studies to clinical applications in cancer therapy, their promising preclinical performance highlights their potential as patient-centric platforms capable of advancing precision oncology. Further their adaptability, multifunctionality, and capacity for stimuli-responsive drug release underscore their potential to improve clinical outcomes, offering a targeted, low-toxicity paradigm for managing diverse malignancies.
Collapse
Affiliation(s)
- Jayesh Khandal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shubham Dohare
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
2
|
Han Z, Yuan M, Liu L, Zhang K, Zhao B, He B, Liang Y, Li F. pH-Responsive wound dressings: advances and prospects. NANOSCALE HORIZONS 2023; 8:422-440. [PMID: 36852666 DOI: 10.1039/d2nh00574c] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wound healing is a complex and dynamic process, in which the pH value plays an important role in reflecting the wound status. Wound dressings are materials that are able to accelerate the healing process. Among the multifunctional advanced wound dressings developed in recent years, pH-responsive wound dressings, especially hydrogels, show great potential owing to their unique properties of adjusting their functions according to the wound conditions, thereby allowing the wound to heal in a regulated manner. However, a comprehensive review of pH-responsive wound dressings is lacking. This review summarizes the design strategies and advanced functions of pH-responsive hydrogel wound dressings, including their excellent antibacterial properties and significant pro-healing abilities. Other advanced pH-responsive materials, such as nanofibers, composite films, nanoparticle clusters, and microneedles, are also classified and discussed. Next, the pH-monitoring functions of pH-responsive wound dressings and the related pH indicators are summarized in detail. Finally, the achievements, challenges, and future development trends of pH-responsive wound dressings are discussed.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Lubin Liu
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Kaiyue Zhang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266000, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| |
Collapse
|
3
|
Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y, Yu T, Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front Bioeng Biotechnol 2023; 11:1158749. [PMID: 37025360 PMCID: PMC10070861 DOI: 10.3389/fbioe.2023.1158749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Drug delivery nanosystems (DDnS) is widely developed recently. Gelatin is a high-potential biomaterial originated from natural resources for anticancer DDnS, which can effectively improve the utilization of anticancer drugs and reduce side effects. The hydrophilic, amphoteric behavior and sol-gel transition of gelatin can be used to fulfill various requirements of anticancer DDnS. Additionally, the high number of multifunctional groups on the surface of gelatin provides the possibility of crosslinking and further modifications. In this review, we focus on the properties of gelatin and briefly elaborate the correlation between the properties and anticancer DDnS. Furthermore, we discuss the applications of gelatin-based DDnS in various cancer treatments. Overall, we have summarized the excellent properties of gelatin and correlated with DDnS to provide a manual for the design of gelatin-based materials for DDnS.
Collapse
Affiliation(s)
- Xianchao Jiang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhen Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinran Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zihao Song
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| |
Collapse
|
4
|
Ahmady AR, Razmjooee K, Saber-Samandari S, Toghraie D. Fabrication of chitosan-gelatin films incorporated with thymol-loaded alginate microparticles for controlled drug delivery, antibacterial activity and wound healing: In-vitro and in-vivo studies. Int J Biol Macromol 2022; 223:567-582. [PMID: 36356874 DOI: 10.1016/j.ijbiomac.2022.10.249] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Previously, studies have demonstrated the unique characteristics of chitosan-gelatin films as wound dressings applications. However, their application has been limited due to their inadequacy of antimicrobial and anti-inflammatory characteristics. To improve the intended multifunctional characteristics of chitosan-gelatin film, in this study, we designed a novel composite film with the capability of controlled and prolonged release of thymol as a natural antioxidant and antimicrobial drug. Here, thymol-loaded ALG MPs (Thymol-ALG MPs) were prepared by electrospraying method and incorporated into the chitosan-gelatin film. The composite wound dressings of Thymol-ALG MPs incorporated in chitosan-gelatin film (CS-GEL/Thymol-ALG MPs) were characterized by in vitro and in vivo evaluations. The Thymol-ALG MPs demonstrated spherical and uniform morphology, with high encapsulation efficiency (88.9 ± 1.1 %). The CS-GEL/Thymol-ALG MPs exhibited high antibacterial activity against both Gram-positive and Gram-negative bacteria and no cytotoxicity for the L929 fibroblast cells. The release trend of thymol from CS-GEL/Thymol-ALG MPs and Thymol-ALG MPs followed a pseudo-Fickian diffusion mechanism. This wound dressing effectively accelerates the wound healing process at rats' full-thickness skin excisions. Also, the histological analysis demonstrated that the CS-GEL/Thymol-ALG MPs could significantly enhance epithelialization, collagen deposition, and induce skin regeneration. The present antibacterial composite film has promising characteristics for wound dressings applications.
Collapse
Affiliation(s)
- Azin Rashidy Ahmady
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Kavoos Razmjooee
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Saber-Samandari
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
5
|
pH-responsive magnolol nanocapsule-embedded magnolol-grafted-chitosan hydrochloride hydrogels for promoting wound healing. Carbohydr Polym 2022; 292:119643. [DOI: 10.1016/j.carbpol.2022.119643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022]
|
6
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
7
|
Doymus B, Kerem G, Yazgan Karatas A, Kok FN, Önder S. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance in vitro. J Biomater Appl 2020; 35:655-669. [PMID: 33283583 DOI: 10.1177/0885328220977765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial infections and lack of osseointegration may negatively affect the success of titanium (Ti) implants. In the present study, a functional coating composed of chitosan (CS) microspheres and nano hydroxyapatite (nHA) was prepared to obtain antimicrobial Ti implants with enhanced bioactivity. First, the chitosan microspheres were fixed to Ti surfaces activated by alkali and heat treatment, then nHA coatings were precipitated onto these surfaces. Ciprofloxacin was loaded into the microspheres using two different procedures; encapsulation and diffusion. Scanning electron microscopy micrographs of the modified Ti surfaces showed that the coating was successfully deposited onto the Ti surfaces and stable for 30 days in PBS. The drug was completely released from free microspheres loaded by encapsulation in 21 days whereas only 89% release was observed after immobilization. The burst release also decreased from ca. 55% to ca. 35%. The release was further reduced following the nHA precipitation. The modified Ti surfaces showed antimicrobial activity based on the bacterial time-kill assay using S. aureus, but the efficiency was affected by both nHA precipitation and drug loading strategy. Highest antimicrobial activity was seen in the samples without nHA layer, and when the drug was loaded by diffusion. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed that nHA on the surface enhanced HA growth in simulated body fluid for 3 weeks, showing increased osseointegration potential. Therefore, the proposed coating may be used to prevent Ti implant failure originated from bacterial infection and/or low bioactivity.
Collapse
Affiliation(s)
- Burcu Doymus
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Gizem Kerem
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Ayten Yazgan Karatas
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Fatma Nese Kok
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Sakip Önder
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
8
|
Bal‐Öztürk A, Özkahraman B, Özbaş Z, Yaşayan G, Tamahkar E, Alarçin E. Advancements and future directions in the antibacterial wound dressings – A review. J Biomed Mater Res B Appl Biomater 2020; 109:703-716. [DOI: 10.1002/jbm.b.34736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ayça Bal‐Öztürk
- Dept. of Analytical Chemistry, Faculty of Pharmacy Istinye University Istanbul Turkey
- Dept. of Stem Cell and Tissue Engineering, Institute of Health Sciences Istinye University Istanbul Turkey
| | - Bengi Özkahraman
- Dept. of Polymer Engineering, Faculty of Engineering Hitit University Turkey
| | - Zehra Özbaş
- Dept. of Chemical Engineering, Faculty of Engineering Cankırı Karatekin University Turkey
| | - Gökçen Yaşayan
- Dept. of Pharmaceutical Technology, Faculty of Pharmacy Marmara University Istanbul Turkey
| | - Emel Tamahkar
- Dept. of Chemical Engineering, Faculty of Engineering Hitit University Turkey
| | - Emine Alarçin
- Dept. of Pharmaceutical Technology, Faculty of Pharmacy Marmara University Istanbul Turkey
| |
Collapse
|