1
|
Mahmoudnezhad A, Bayrami M, Saadati M, Ertaş YN, Abasi M, Ebrahimi A, Pilehvar Y. Core-shell nanofiber dressings with zinc oxide nanoparticles and cell-free fat extract: boosting fibroblast activity and antibacterial efficacy. J Biol Eng 2025; 19:46. [PMID: 40390077 PMCID: PMC12090510 DOI: 10.1186/s13036-025-00511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/21/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND This study presents the development and characterization of innovative core-shell nanofiber wound dressings incorporating zinc oxide nanoparticles (nZnO) and cell-free fat extract (CEFFE) to enhance fibroblast activity and antibacterial efficacy. RESULTS CEFFE was prepared and analyzed, revealing high concentrations of essential growth factors, particularly bFGF and TGF-β1, supporting its therapeutic potential in tissue regeneration. The fabricated nanofibers (PLCL, nZnO/PLCL, PLCL-CEFFE/HA, and nZnO/PLCL-CEFFE/HA) were examined using FE-SEM and TEM, demonstrating successful encapsulation and morphological variations due to nZnO incorporation. XRD analysis confirmed the structural integrity and effective loading of nZnO and CEFFE. Hydrophilicity assessment via water contact angle measurements showed that CEFFE/HA significantly enhanced the hydrophilicity of PLCL membranes, crucial for wound exudate management. Mechanical tests indicated that CEFFE/HA addition maintained the scaffold's mechanical robustness, while nZnO slightly reduced mechanical properties. In vitro release studies revealed a biphasic release pattern of Zn²⁺ ions and growth factors from nZnO/PLCL-CEFFE/HA nanofibers, ensuring prolonged antibacterial activity and sustained therapeutic effects. Antibacterial assays demonstrated significant efficacy against E. coli and S. aureus, attributed to nZnO. MTT assays and FE-SEM analysis confirmed enhanced NIH-3T3 cell proliferation and adhesion on PLCL-CEFFE/HA nanofibers due to the controlled release of growth factors. The scratch assay showed superior cell migration and wound healing potential for PLCL-CEFFE/HA formulations. CONCLUSIONS These findings underscore the potential of nZnO/PLCL-CEFFE/HA core-shell nanofibers as multifunctional wound dressings, combining antibacterial properties with enhanced tissue regeneration capabilities. However, further studies are needed to assess long-term stability and in vivo performance, which represent key challenges for future research.
Collapse
Affiliation(s)
- Aydin Mahmoudnezhad
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mahsa Bayrami
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mahdiyeh Saadati
- Department of Life Sciences and Health, Paris-Saclay University, Orsay, France
| | - Yavuz Nuri Ertaş
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aylar Ebrahimi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
3
|
González-Martínez JR, López-Oyama AB, Del Ángel-López D, García-Guendulain C, Rodríguez-González E, Pulido-Barragan EU, Barffuson-Domínguez F, Magallanes-Vallejo AG, Mogica-Cantú PJ. Influence of Reduced Graphene Oxide and Carbon Nanotubes on the Structural, Electrical, and Photoluminescent Properties of Chitosan Films. Polymers (Basel) 2024; 16:1827. [PMID: 39000683 PMCID: PMC11243828 DOI: 10.3390/polym16131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Chitosan is a biopolymer with unique properties that have attracted considerable attention in various scientific fields in recent decades. Although chitosan is known for its poor electrical and mechanical properties, there is interest in producing chitosan-based materials reinforced with carbon-based materials to impart exceptional properties such as high electrical conductivity and high Young's modulus. This study describes the synergistic effect of carbon-based materials, such as reduced graphene oxide and carbon nanotubes, in improving the electrical, optical, and mechanical properties of chitosan-based films. Our findings demonstrate that the incorporation of reduced graphene oxide influences the crystallinity of chitosan, which considerably impacts the mechanical properties of the films. However, the incorporation of a reduced graphene oxide-carbon nanotube complex not only significantly improves the mechanical properties but also significantly improves the optical and electrical properties, as was demonstrated from the photoluminescence studies and resistivity measurements employing the four-probe technique. This is a promising prospect for the synthesis of new materials, such as biopolymer films, with potential applications in optical, electrical, and biomedical bioengineering applications.
Collapse
Affiliation(s)
- Jesús R. González-Martínez
- Departamento de Investigación en Física (DIFUS), Universidad de Sonora, Blvd. Transversal S/N., Hermosillo 83000, Sonora, Mexico;
| | - Ana B. López-Oyama
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira del Instituto Politécnico Nacional, Km. 14.5 Carr. Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (D.D.Á.-L.); (E.R.-G.); (E.U.P.-B.); (A.G.M.-V.); (P.J.M.-C.)
- Conahcyt-Cicata Unidad Altamira, IPN. Km. 14.5 Carretera Puerto Industrial, Altamira 89600, Tamaulipas, Mexico
| | - Deyanira Del Ángel-López
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira del Instituto Politécnico Nacional, Km. 14.5 Carr. Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (D.D.Á.-L.); (E.R.-G.); (E.U.P.-B.); (A.G.M.-V.); (P.J.M.-C.)
| | - Crescencio García-Guendulain
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Blvd. Petrocel Km. 1.3, Altamira 89603, Tamaulipas, Mexico
| | - Eugenio Rodríguez-González
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira del Instituto Politécnico Nacional, Km. 14.5 Carr. Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (D.D.Á.-L.); (E.R.-G.); (E.U.P.-B.); (A.G.M.-V.); (P.J.M.-C.)
| | - Eder U. Pulido-Barragan
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira del Instituto Politécnico Nacional, Km. 14.5 Carr. Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (D.D.Á.-L.); (E.R.-G.); (E.U.P.-B.); (A.G.M.-V.); (P.J.M.-C.)
- Conahcyt-Cicata Unidad Altamira, IPN. Km. 14.5 Carretera Puerto Industrial, Altamira 89600, Tamaulipas, Mexico
| | - Felipe Barffuson-Domínguez
- Departamento de Física, Universidad de Sonora, Blvd. Transversal S/N., Hermosillo 83000, Sonora, Mexico;
| | - Aurora G. Magallanes-Vallejo
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira del Instituto Politécnico Nacional, Km. 14.5 Carr. Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (D.D.Á.-L.); (E.R.-G.); (E.U.P.-B.); (A.G.M.-V.); (P.J.M.-C.)
| | - Pablo J. Mogica-Cantú
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira del Instituto Politécnico Nacional, Km. 14.5 Carr. Puerto Industrial, Altamira 89600, Tamaulipas, Mexico; (D.D.Á.-L.); (E.R.-G.); (E.U.P.-B.); (A.G.M.-V.); (P.J.M.-C.)
| |
Collapse
|
4
|
Development of Gelatin Thin Film Reinforced by Modified Gellan Gum and Naringenin-Loaded Zein Nanoparticle as a Wound Dressing. Macromol Res 2022. [DOI: 10.1007/s13233-022-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Composite Membrane Dressings System with Metallic Nanoparticles as an Antibacterial Factor in Wound Healing. MEMBRANES 2022; 12:membranes12020215. [PMID: 35207136 PMCID: PMC8876280 DOI: 10.3390/membranes12020215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
Wound management is the burning problem of modern medicine, significantly burdening developed countries’ healthcare systems. In recent years, it has become clear that the achievements of nanotechnology have introduced a new quality in wound healing. The application of nanomaterials in wound dressing significantly improves their properties and promotes the healing of injuries. Therefore, this review paper presents the subjectively selected nanomaterials used in wound dressings, including the metallic nanoparticles (NPs), and refers to the aspects of their application as antimicrobial factors. The literature review was supplemented with the results of our team’s research on the elements of multifunctional new-generation dressings containing nanoparticles. The wound healing multiple molecular pathways, mediating cell types, and affecting agents are discussed herein. Moreover, the categorization of wound dressings is presented. Additionally, some materials and membrane constructs applied in wound dressings are described. Finally, bacterial participation in wound healing and the mechanism of the antibacterial function of nanoparticles are considered. Membranes involving NPs as the bacteriostatic factors for improving wound healing of skin and bones, including our experimental findings, are discussed in the paper. In addition, some studies of our team concerning the selected bacterial strains’ interaction with material involving different metallic NPs, such as AuNPs, AgNPs, Fe3O4NPs, and CuNPs, are presented. Furthermore, nanoparticles’ influence on selected eukaryotic cells is mentioned. The ideal, universal wound dressing still has not been obtained; thus, a new generation of products have been developed, represented by the nanocomposite materials with antibacterial, anti-inflammatory properties that can influence the wound-healing process.
Collapse
|
6
|
Ding C, Zhou C, Fan Y, Liu Q, Zhang H, Wu Z. Electrospun polylactic acid/sulfadiazine sodium/proteinase nanofibers and their applications in treating frostbite. J Appl Polym Sci 2021. [DOI: 10.1002/app.51716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chengbiao Ding
- Department of Rehabilitation Medicine The Second Hospital of Anhui Medical University Hefei Anhui China
- School of Nuclear Science and Technology University of Science and Technology of China Hefei China
| | - Chenxu Zhou
- Department of Rehabilitation Medicine The Second Hospital of Anhui Medical University Hefei Anhui China
| | - Yueyao Fan
- School of Nuclear Science and Technology University of Science and Technology of China Hefei China
| | - Qi Liu
- School of Nuclear Science and Technology University of Science and Technology of China Hefei China
| | - Haifeng Zhang
- School of Nuclear Science and Technology University of Science and Technology of China Hefei China
| | - Zhengwei Wu
- School of Nuclear Science and Technology University of Science and Technology of China Hefei China
- CAS Key Laboratory of Geospace Environment University of Science and Technology of China Hefei China
| |
Collapse
|
7
|
Li P, Ruan L, Wang R, Liu T, Song G, Gao X, Jiang G, Liu X. Electrospun Scaffold of Collagen and Polycaprolactone Containing ZnO Quantum Dots for Skin Wound Regeneration. JOURNAL OF BIONIC ENGINEERING 2021; 18:1378-1390. [PMID: 34840554 PMCID: PMC8607054 DOI: 10.1007/s42235-021-00115-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Nanofibers (NFs) have been widely used in tissue engineering such as wound healing. In this work, the antibacterial ZnO quantum dots (ZnO QDs) have been incorporated into the biocompatible poly (ε-caprolactone)/collagen (PCL/Col) fibrous scaffolds for wound healing. The as-fabricated PCL-Col/ZnO fibrous scaffolds exhibited good swelling, antibacterial activity, and biodegradation behaviors, which were beneficial for the applications as a wound dressing. Moreover, the PCL-Col/ZnO fibrous scaffolds showed excellent cytocompatibility for promoting cell proliferation. The resultant PCL-Col/ZnO fibrous scaffolds containing vascular endothelial growth factor (VEGF) also exhibited promoted wound-healing effect through promoting expression of transforming growth factor-β (TGF-β) and the vascular factor (CD31) in tissues in the early stages of wound healing. This new electrospun fibrous scaffolds with wound-healing promotion and antibacterial property should be convenient for treating wound healing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42235-021-00115-7.
Collapse
Affiliation(s)
- Pengfei Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Liming Ruan
- Department of Dermatology, Beilun People’s Hospital of Ningbo City, Ningbo, 315800 China
| | - Ruofan Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Department of Dermatology, Beilun People’s Hospital of Ningbo City, Ningbo, 315800 China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Gao Song
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Xiaofei Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Xiaoyan Liu
- Department of Dermatology, The 1st Affiliated Hospital of Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
8
|
Dharmalingam K, Bordoloi D, Kunnumakkara AB, Anandalakshmi R. Preparation and characterization of cellulose‐based nanocomposite hydrogel films containing
CuO
/
Cu
2
O
/Cu with antibacterial activity. J Appl Polym Sci 2020. [DOI: 10.1002/app.49216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Koodalingam Dharmalingam
- Advance Energy & Materials Systems Laboratory (AEMSL), Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory & DBT‐AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati Assam India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory & DBT‐AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati Assam India
| | - Ramalingam Anandalakshmi
- Advance Energy & Materials Systems Laboratory (AEMSL), Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam India
| |
Collapse
|