1
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Hewitt DRO, Grubbs RB. Amine-Catalyzed Chain Polymerization of Ethyl Glyoxylate from Alcohol and Thiol Initiators. ACS Macro Lett 2021; 10:370-374. [PMID: 35549067 DOI: 10.1021/acsmacrolett.0c00865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyacetals have significant potential as degradable polymers, but aldehyde polymerizations are generally difficult to control. Here we show that polymerization of ethyl glyoxylate can be initiated from alcohols or thiols by activation with triethylamine to afford poly(ethyl glyoxylate) with controllable molecular weights and relatively low dispersities (Đ = 1.3-1.4), as evidenced by MALDI-TOF mass spectrometry. Stabilization against depolymerization by chain-capping with benzyl chloroformate was found to proceed without side reactions observed from chain-capping with tolyl isocyanate. The use of the stronger base DBU leads to competing side reactions that limit polymer molecular weight.
Collapse
Affiliation(s)
- David R. O. Hewitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert B. Grubbs
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Andrade-Gagnon B, Bélanger-Bouliga M, Trang Nguyen P, Nguyen THD, Bourgault S, Nazemi A. Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E161. [PMID: 33435172 PMCID: PMC7826923 DOI: 10.3390/nano11010161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Polymeric nanomaterials that degrade in acidic environments have gained considerable attention in nanomedicine for intracellular drug delivery and cancer therapy. Among various acid-degradable linkages, spirocyclic acetals have rarely been used to fabricate such vehicles. In addition to acid sensitivity, they benefit from conformational rigidity that is otherwise not attainable by their non-spirocyclic analogs. Herein, amphiphilic spirocyclic polyacetals are synthesized by Cu-catalyzed alkyne-azide "click" polymerization. Unlike conventional block copolymers, which often form core-shell structures, these polymers self-assemble to form core amphiphilic assemblies capable of encapsulating Nile red as a hydrophobic model drug. In vitro experiments show that while release from these materials can occur at neutral pH with preservation of their integrity, acidic pH accelerates efficient cargo release and leads to the complete degradation of assemblies. Moreover, cellular assays reveal that these materials are fully cytocompatible, interact with the plasma membrane, and can be internalized by cells, rendering them as potential candidates for cancer therapy and/or drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada; (B.A.-G.); (M.B.-B.); (P.T.N.); (T.H.D.N.); (S.B.)
| |
Collapse
|
4
|
Warlin N, Nilsson E, Guo Z, Mankar SV, Valsange NG, Rehnberg N, Lundmark S, Jannasch P, Zhang B. Synthesis and melt-spinning of partly bio-based thermoplastic poly(cycloacetal-urethane)s toward sustainable textiles. Polym Chem 2021. [DOI: 10.1039/d1py00450f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Partly bio-based thermoplastic poly(cycloacetal-urethane)s synthesized and melt-spun into textile fibres that can be potentially chemically recycled.
Collapse
Affiliation(s)
- Niklas Warlin
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Erik Nilsson
- Plasman, Molndalsvagen 36, 412 63 Gothenburg, Sweden
- Department of Chemistry, Biomaterials and Textile, RISE - Research Institutes of Sweden, Mölndal, SE-43153, Sweden
| | - Zengwei Guo
- Department of Chemistry, Biomaterials and Textile, RISE - Research Institutes of Sweden, Mölndal, SE-43153, Sweden
| | - Smita V. Mankar
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Nitin G. Valsange
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Nicola Rehnberg
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
- Strategic R&D, Bona AB, Box 210 74, 200 21 Malmö, Sweden
| | - Stefan Lundmark
- Perstorp AB, Innovation, Perstorp Industrial Park, 284 80 Perstorp, Sweden
| | - Patric Jannasch
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
5
|
Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym Chem 2021. [DOI: 10.1039/d1py01017d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spiro polycycloacetals were synthesized from vanillin and syringaldehyde, along with high-performance co-monomers, exhibiting high glass transition temperatures and thermal stabilities, and rapid rates of hydrolysis in acidic solutions.
Collapse
Affiliation(s)
- Minjie Shen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Srikanth Vijjamarri
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hongda Cao
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Karla Solis
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|