1
|
Deng B, Gong C, Wen S, Liu H, Zhang X, Fan X, Wang F, Guo L, Xiong Z, Du F, Ou Y. Quaternized chitosan/polyvinyl alcohol anion exchange membrane enhanced by functionalized attapulgite clay with an ionic "chain-ball" surface structure. Int J Biol Macromol 2024; 271:132595. [PMID: 38821803 DOI: 10.1016/j.ijbiomac.2024.132595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Biomass chitosan has garnered considerable interest for alkaline anion exchange membranes (AEMs) due to its eco-friendly and sustainable characteristics, low reactant permeability and easily modifiable nature, but it still faces the trade-off between high hydroxide conductivity and sufficient mechanical properties. Herein, a novel functionalized attapulgite clay (f-ATP) with a unique ionic "chain-ball" surface structure was prepared and incorporated with quaternized chitosan (QCS)/polyvinyl alcohol (PVA) matrix to fabricate high-performance composite AEMs. Due to the strengthened interfacial bonding between f-ATP nanofillers and the QCS/PVA matrix, composite membranes are synergistically reinforced and toughened, achieving peak tensile strength and elongation at break of 24.62 MPa and 33.8 %. Meanwhile, abundant ion pairs on f-ATP surface facilitate ion transport in the composite AEMs, with the maximum OH- conductivity of 46 mS cm-1 at 80 °C and the highest residual IEC of 83 % after alkaline treatment for 120 h. Moreover, the assembled alkaline direct methanol fuel cell exhibits a remarkable power density of 49.3 mW cm-2 at 80 °C. This work provides a new strategy for fabricating high-performance anion exchange membranes.
Collapse
Affiliation(s)
- Bangjun Deng
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; College of Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Sheng Wen
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Xiaowen Zhang
- College of Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xiangjian Fan
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Fei Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Li Guo
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zemiao Xiong
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feipeng Du
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
2
|
Silva TFD, Morgado GFDM, Albers APF, Quinteiro E, Passador FR. High‐density polyethylene/attapulgite (
ATP
) nanocomposites: Effect of the organophilization of
ATP
on the structural, mechanical, and thermal properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thais Ferreira da Silva
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | | | - Ana Paula Fonseca Albers
- Ceramic Technology Laboratory Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | - Eduardo Quinteiro
- Ceramic Technology Laboratory Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| | - Fabio Roberto Passador
- Polymer and Biopolymer Technology Laboratory (TecPBio) Federal University of São Paulo (UNIFESP) São José dos Campos Brazil
| |
Collapse
|
3
|
Influence of surface modification of attapulgite (ATP) with aminosilane (3-aminopropyl) triethoxysilane for the preparation of LLDPE/ATP nanocomposites. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02953-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Huang X, Wu W. Novel preparation of attapulgite-reduced graphene oxide hydrogel composite and its application in flexible solid-state supercapacitors. NANOTECHNOLOGY 2022; 33:205704. [PMID: 35078160 DOI: 10.1088/1361-6528/ac4eb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
After graphite oxide assisted the liquid phase shear exfoliation of attapulgite, the good dissociation and dispersion of attapulgite rod crystals are realized. Due to the spatial hindrance effect of attapulgite, which prevents the stacking of RGO sheets, the attapulgite-reduced graphene oxide three-dimensional porous hydrogel with abundant pore structure enables rapid transfer of electrolyte ions and exhibits good electrochemical performance and rate performance. The assembled flexible solid-state supercapacitor has a high operating voltage window and good flexibility and cycle stability. At a current density of 0.1 mA cm-2, it has an area specific capacitance of 127.33 mF cm-2. A series of solid-state supercapacitors can be used as the power supply for LED lights.
Collapse
Affiliation(s)
- Xiaohui Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, People's Republic of China
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wei Wu
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Spoială A, Ilie CI, Ficai D, Ficai A, Andronescu E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2091. [PMID: 33919022 PMCID: PMC8122305 DOI: 10.3390/ma14092091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance's features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant's retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania;
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
6
|
Wong CY, Wong WY, Liu L, Shibutani Y, Loh KS. Molecular dynamic simulation approach to understand the physical and proton transport properties of chitosan/sulfonated Poly(Vinyl alcohol) composite membranes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Effect of Silane Functionalization on Properties of Poly(Lactic Acid)/Palygorskite Nanocomposites. INORGANICS 2021. [DOI: 10.3390/inorganics9010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poly(lactic acid) (PLA)/palygorskite (Paly) nanocomposites were prepared using the melt compounding technique. Paly modified by 3-aminopropyltriethoxysilane (APTES) and vinyltrimethoxysilane (VTMS) was used as nanofiller for PLA with concentrations in the 1–7 wt% range. It has been found that the functionalization allows a covalent bond between the hydroxyl groups of the Paly and the PLA matrix, evidenced by the improvement in mechanical properties. Paly modification with VTMS has better properties compared with Pale modification with APTES. This indicates a better adhesion between the Paly-VTMS and PLA matrix, and a good dispersion of the nanofiller in the polymer matrix.
Collapse
|
8
|
Sun X, Zhu F, Liu X, Ren H, Xia M, Yang M, Feng Y, Ding H. Acid–base core–shell microspheres are incorporated into proton exchange membranes to effectively alleviate the rapid decline in proton conductivity at low humidity. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320957407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of a proton exchange membrane (PEM) that can avoid rapid decay of proton conductivity under low humidity is of great significance for the practical application of PEMFC. In this study, acid–base core–shell microspheres (PCSMs-MA@TAC) with a carboxylic acid core and a triazine shell were synthesized by distillation-precipitation polymerization using cross-linked carboxylic acid microspheres (PMAA) as seeds. These PCSMs were then incorporated into a sulfonated poly(ether ether ketone) matrix to make hybrid membranes. Incorporation of PCSMs microspheres can not only strengthen the vehicle mechanism by increasing the water uptake of the membrane, but also the acid–base pairs formed at the SPEEK/PCSMs interface provide a new low-energy barrier pathway for proton hopping, thereby enhancing the proton conduction of the Grotthuss mechanism. The results show that when the content is 10 wt%, the proton conductivity of the SPEEK/PCSMs-MA@TAC composite membrane can reach 0.161 S cm−1 at 80°C and 100% RH, which is 19.3% higher than the SPEEK control membrane (0.135 S cm−1). In particular, even at 60% RH, the proton conductivity of the SPEEK/PCSMs-MA@TAC-10 composite membrane is still 67 mS cm−1, which is 3.16 times higher than that of the SPEEK membrane. Therefore, the SPEEK/PCSMs-MA@TAC composite membrane can maintain superior performance even under high temperature and low humidity conditions.
Collapse
Affiliation(s)
- Xiang Sun
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Fan Zhu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Xiaoyang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Hongqian Ren
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Minglong Xia
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Mengjie Yang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Yi Feng
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| | - Huili Ding
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China
| |
Collapse
|