1
|
Hueppe N, Wurm FR, Landfester K. Nanocarriers with Multiple Cargo Load-A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromol Rapid Commun 2023; 44:e2200611. [PMID: 36098551 DOI: 10.1002/marc.202200611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Multifunctional nanocarriers enhance the treatment efficacy for modern therapeutics and have gained increasing importance in biomedical research. Codelivery of multiple bioactive molecules enables synergistic therapies. Coencapsulation of cargo molecules into one nanocarrier system is challenging due to different physicochemical properties of the cargo molecules. Additionally, coencapsulation of multiple molecules simultaneously shall proceed with high control and efficiency. Orthogonal approaches for the preparation of nanocarriers are essential to encapsulate sensitive bioactive molecules while preserving their bioactivity. Preparation of nanocarriers by physical processes (i.e., self-assembly or coacervation) and chemical reactions (i.e., click reactions, polymerizations, etc.) are considered as orthogonal methods to most cargo molecules. This review shall act as a guideline to allow the reader to select a suitable preparation protocol for a desired nanocarrier system. This article helps to select for combinations of cargo molecules (hydrophilic-hydrophobic, small-macro, organic-inorganic) with nanocarrier material and synthesis protocols. The focus of this article lies on the coencapsulation of multiple cargo molecules into biocompatible and biodegradable nanocarriers prepared by orthogonal strategies. With this toolbox, the selection of a preparation method for a known set of cargo molecules to prepare the desired biodegradable and loaded nanocarrier shall be provided.
Collapse
Affiliation(s)
- Natkritta Hueppe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
2
|
Rodgers TM, Muzzio N, Valero A, Ahmad I, Lüdtke TU, Moya SE, Romero G. Poly (β-amino Ester) Nanoparticles Modified with a Rabies Virus-derived peptide for the Delivery of ASCL1 Across a 3D In Vitro Model of the Blood Brain Barrier. ACS APPLIED NANO MATERIALS 2023; 6:6299-6311. [PMID: 37274933 PMCID: PMC10234607 DOI: 10.1021/acsanm.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gene editing has emerged as a therapeutic approach to manipulate the genome for killing cancer cells, protecting healthy tissues, and improving immune response to a tumor. The gene editing tool achaete-scute family bHLH transcription factor 1 CRISPR guide RNA (ASCL1-gRNA) is known to restore neuronal lineage potential, promote terminal differentiation, and attenuate tumorigenicity in glioblastoma tumors. Here, we fabricated a polymeric nonviral carrier to encapsulate ASCL1-gRNA by electrostatic interactions and deliver it into glioblastoma cells across a 3D in vitro model of the blood-brain barrier (BBB). To mimic rabies virus (RV) neurotropism, gene-loaded poly (β-amino ester) nanoparticles are surface functionalized with a peptide derivative of rabies virus glycoprotein (RVG29). The capability of the obtained NPs, hereinafter referred to as RV-like NPs, to travel across the BBB, internalize into glioblastoma cells and deliver ASCL1-gRNA are investigated in a 3D BBB in vitro model through flow cytometry and CLSM microscopy. The formation of nicotinic acetylcholine receptors in the 3D BBB in vitro model is confirmed by immunochemistry. These receptors are known to bind to RVG29. Unlike Lipofectamine that primarily internalizes and transfects endothelial cells, RV-like NPs are capable to travel across the BBB, preferentially internalize glioblastoma cells and deliver ASCL1-gRNA at an efficiency of 10 % causing non-cytotoxic effects.
Collapse
Affiliation(s)
- Tina M Rodgers
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Andrea Valero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Ikram Ahmad
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Sergio E Moya
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| |
Collapse
|
3
|
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021; 51:128-152. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.
Collapse
Affiliation(s)
- Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. .,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021; 13:853. [PMID: 34201333 PMCID: PMC8227511 DOI: 10.3390/pharmaceutics13060853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.
Collapse
Affiliation(s)
| | | | | | - Gabriela Romero Uribe
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| | - Liang Tang
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| |
Collapse
|
5
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
6
|
Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 2021; 18:1047-1066. [DOI: 10.1080/17425247.2021.1879790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dmitrii S. Linnik
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yana V. Tarakanchikova
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation, First I. P. Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Joeri L. Aerts
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Neuro-Aging & Viro-Immunotherapy Lab (NAVI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Gleb Sukhorukov
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Alexander S. Timin
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
7
|
Stabilization of Poly (β-Amino Ester) Nanoparticles for the Efficient Intracellular Delivery of PiggyBac Transposon. Bioengineering (Basel) 2021; 8:bioengineering8020016. [PMID: 33498466 PMCID: PMC7909559 DOI: 10.3390/bioengineering8020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022] Open
Abstract
The administration of gene-editing tools has been proposed as a promising therapeutic approach for correcting mutations that cause diseases. Gene-editing tools, composed of relatively large plasmid DNA constructs that often need to be co-delivered with a guiding protein, are unable to spontaneously penetrate mammalian cells. Although viral vectors facilitate DNA delivery, they are restricted by the size of the plasmid to carry. In this work, we describe a strategy for the stable encapsulation of the gene-editing tool piggyBac transposon into Poly (β-amino ester) nanoparticles (NPs). We propose a non-covalent and a covalent strategy for stabilization of the nanoformulation to slow down release kinetics and enhance intracellular delivery. We found that the formulation prepared by covalently crosslinking Poly (β-amino ester) NPs are capable to translocate into the cytoplasm and nuclei of human glioblastoma (U87MG) cells within 1 h of co-culturing, without the need of a targeting moiety. Once internalized, the nanoformulation dissociates, delivering the plasmid presumably as a response to the intracellular acidic pH. Transfection efficiency is confirmed by green fluorescence protein (GFP) expression in U87MG cells. Covalently stabilized Poly (β-amino ester) NPs are able to transfect ~55% of cells causing non-cytotoxic effects. The strategy described in this work may serve for the efficient non-viral delivery of other gene-editing tools.
Collapse
|
8
|
Bataglioli RA, Rocha Neto JB, Leão BS, Germiniani LG, Taketa TB, Beppu MM. Interplay of the Assembly Conditions on Drug Transport Mechanisms in Polyelectrolyte Multilayer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12532-12544. [PMID: 33064494 PMCID: PMC7660939 DOI: 10.1021/acs.langmuir.0c01980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Indexed: 05/06/2023]
Abstract
The layer-by-layer film deposition is a suitable strategy for the design and functionalization of drug carriers with superior performance, which still lacks information describing the influence of assembly conditions on the mechanisms governing the drug release process. Herein, traditional poly(acrylic acid)/poly(allylamine) polyelectrolyte multilayers (PEM) were explored as a platform to study the influence of the assembly conditions such as pH, drug loading method, and capping layer deposition on the mechanisms that control the release of calcein, the chosen model drug, from PEM. Films with 20-40 bilayers were assembled at pH 4.5 or 8.8, and the drug loading process was carried out during- or post-film assembly. Release data were fitted to three release models, namely, Higuchi, Ritger-Peppas, and Berens-Hopfenberg, to investigate the mechanism governing the drug transport, such as the apparent diffusion and the relaxation time. The postassembly drug loading method leads to a higher drug loading capacity than the during-assembly method, attributed to the washing out of calcein during film assembly steps in the latter method. Higuchi's and Ritger-Peppas' model analyses indicate that the release kinetic constant increased with the number of bilayers for the postassembly method. The opposite trend is observed for the during-assembly method. The Berens-Hopfenberg release model enabled the decoupling of each drug transport mechanism's contribution, indicating the increase of the diffusion contribution with the number of bilayers for the postassembly method at pH 4.5 and the increase of the polymer relaxation contribution for the during-assembly method at pH 8.8. Deborah's number, which represents the ratio of the polymer relaxation time to the diffusion time, follows the trends observed for the relaxation contribution for the conditions investigated. The deposition of the capping phospholipid layer over the payload also favored the polymer relaxation contribution in the drug release, featuring new strategies to investigate the drug release in PEM.
Collapse
Affiliation(s)
- Rogério A. Bataglioli
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - João Batista
M. Rocha Neto
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Bruno S. Leão
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Luiz Guilherme
L. Germiniani
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Thiago B. Taketa
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Marisa M. Beppu
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| |
Collapse
|