1
|
Velazquez G, Ramirez-Gutierrez CF, Mendez-Montealvo G, Velazquez-Castillo R, Morelos-Medina LF, Morales-Sánchez E, Gaytán-Martínez M, Rodríguez-García ME, Contreras-Jiménez B. Effect of long-term retrogradation on the crystallinity, vibrational and rheological properties of potato, corn, and rice starches. Food Chem 2025; 477:143455. [PMID: 40015019 DOI: 10.1016/j.foodchem.2025.143455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/30/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Starch retrogradation remains as an area of interest due to its technological implications. The long-term structural changes taking place during the retrogradation process of gels from rice, potato, and corn starches were investigated using X-ray diffraction (XRD), rheology, and Fourier transform infrared spectroscopy (FTIR). Rietveld refinement of XRD showed that initial crystalline arrangement of starches transitioned to a combination of hexagonal and monoclinic structure in varying proportions, also the distribution of crystalline and amorphous phases had a preferential growth depending on the starch source. Final crystallinity values after 28 days in gels were potato (12.38 %) > corn (7.26 %) > rice (1.92 %). All starch gels showed a viscoelastic behavior with a mesh size of the gel network decreasing over time. FTIR showed a close relationship with crystallinity growing. These results enhance the understanding of structural changes in starch gels during retrogradation and help predict their behavior.
Collapse
Affiliation(s)
- Gonzalo Velazquez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Querétaro, Querétaro, Mexico
| | - Cristian Felipe Ramirez-Gutierrez
- Cuerpo Académico de Tecnologías de la Información y Comunicación Aplicada, Universidad Politécnica de Querétaro, El Marqués, Querétaro, Mexico
| | - Guadalupe Mendez-Montealvo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Querétaro, Querétaro, Mexico
| | | | | | - Eduardo Morales-Sánchez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Querétaro, Querétaro, Mexico
| | | | - Mario E Rodríguez-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Brenda Contreras-Jiménez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Querétaro, Querétaro, Mexico; Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| |
Collapse
|
2
|
Hu N, Qi W, Zhu J, Zhao F, Zheng M, Zhao C, Yan J, Liu J. Effect of endogenous protein on starch before and after post-harvest ripening of corn: Structure, pasting, rheological and digestive properties. Food Chem 2025; 473:143039. [PMID: 39879752 DOI: 10.1016/j.foodchem.2025.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
This work revealed the effects of endogenous proteins on the structural, physicochemical, and digestive properties of starch in corn before and after ripening and explored the binding mechanism of proteins with starch. The microstructure showed that the postharvest ripening process resulted in a thinning of the protein layer on the surface of starch particle. After the removal of protein, the uniformity of the sample surface increased, with tiny pores. The proportion of double helix structure of starch were significantly reduced, while the proportion of amorphous structure and the thickness (da) of the amorphous region were significantly increased. The gelatinization enthalpy, gelatinization viscosity value, consistency coefficient, elasticity, and rapid digestibility of starch (RDS) were all significantly increased. Due to the weakening of the interaction between starch (including amylose and amylopectin) and protein in post-ripened corn, the effect of protein removal on the structure and properties of unripened samples was more significant.
Collapse
Affiliation(s)
- Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; School of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Weihua Qi
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Fuyin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China; National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jiannan Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| |
Collapse
|
3
|
Pineda-Gomez P, Ipia-Achury DF, Rodriguez-Garcia ME. Effect of ultrasonically stimulated potato germination during soaking on the physicochemical properties of starch and its use in edible films. Int J Biol Macromol 2024; 277:134508. [PMID: 39106932 DOI: 10.1016/j.ijbiomac.2024.134508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
The aim of this work was to investigate the effects of ultrasonic treatment during soaking of potatoes on the physicochemical properties of starches obtained after 16 weeks of germination. The ultrasonic treatment showed a direct correlation between sprout length and ultrasonic time. The protein content decreased from 0.63 to 0.38 % and the fat content decreased significantly from 0.31 to 0.01 % after germination. The amylose content changed depending on the ultrasonic treatment, and increased from 36.27 to 40.92 % after 16 weeks of germination, which was related to the amylopectin debranching and the duration of the ultrasonic treatment. X-ray diffraction showed that the nanocrystals with hexagonal structure were not affected by the germination and the duration of ultrasonic treatment. Scanning electron microscopy showed that the surface of the starch granules was not affected by the enzymatic treatment. The sprouted potato starch resulted in films with better tensile strength and lower water vapor permeability (WVP) compared to the native potato starch films. In addition, the films produced with ultrasound stimulated potato starch exhibited better properties (high strength and low permeability), which is desirable when it comes to controlling moisture exchange between a food product and the surrounding atmosphere.
Collapse
Affiliation(s)
- Posidia Pineda-Gomez
- Departamento de Física, Universidad de Caldas. Manizales, Caldas, C.P., 170004, Colombia; Laboratorio de Magnetismo y Materiales Avanzados, Universidad Nacional de Colombia. Manizales, Caldas, C.P., 170003, Colombia.
| | - Daniel Felipe Ipia-Achury
- Laboratorio de Magnetismo y Materiales Avanzados, Universidad Nacional de Colombia. Manizales, Caldas, C.P., 170003, Colombia
| | - Mario E Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla N° 3001 C.P., 76230, Juriquilla, Querétaro, Qro., A.P.1-1010, Mexico
| |
Collapse
|
4
|
Ramirez-Gutierrez CF, Contreras-Jiménez BL, Londoño-Restrepo SM. Characterization of starches isolated from Mexican pulse crops: Structural, physicochemical, and rheological properties. Int J Biol Macromol 2024; 268:131576. [PMID: 38636764 DOI: 10.1016/j.ijbiomac.2024.131576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This work aimed to characterize and compare the physicochemical properties of four pulse starches: bean, chickpea, lentil, and pea. Chemical proximate analysis, elemental composition, morphological grain characterization, crystalline structure, thermal analysis, FTIR analysis, and pasting properties were conducted. The proximate analysis shows that these starches have low fat, mineral, and protein content but high amylose values ranging from 29 to 36 % determined by colorimetry. Despite the high amylose content, the starches did not exhibit the typical behavior of an amylose-rich starch, with high peak viscosity and low breakdown and setback. It was found that this behavior was likely due to the large granule size of the ellipsoidal, spherical, and kidney-shaped granules and the high content of some minerals such as Na, Mg, K, Fe, Mn, P, and Si. The study also found that all pulse starches simultaneously contain monoclinic and hexagonal crystals, making them C-type starches. The findings were verified through the Rietveld analyses of X-ray diffraction patterns and differential scanning calorimetry, in which bimodal endothermic peaks evidenced both types of crystals being gelatinized.
Collapse
Affiliation(s)
- Cristian Felipe Ramirez-Gutierrez
- Cuerpo Académico de Tecnologías de la Información y Comunicación Aplicada (TICA), Universidad Politécnica de Querétaro, El Marqués, Querétaro 76240, Mexico.
| | - Brenda Lidia Contreras-Jiménez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco 141 col. Colinas del Cimatario, C.P. 76090 Querétaro, Qro, Mexico; Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.P. 76010 Querétaro, Qro, Mexico.
| | - Sandra Milena Londoño-Restrepo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
5
|
Torres-Vargas OL, Gaytan-Martinez M, Fernanda CC, Millán-Malo BM, Rodriguez-Garcia M. Changes in the physicochemical properties of isolated starch and plantain ( Musa AAB Simmonds) flours for early maturity stage. Heliyon 2023; 9:e18939. [PMID: 37600412 PMCID: PMC10432965 DOI: 10.1016/j.heliyon.2023.e18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
This work focuses on the study of the physicochemical changes that take place during the first stage of ripening of plantain, with particular attention to the changes in the orthorhombic and hexagonal nanocrystals present in this starch, and its relation shift with resistance starch. Significant changes were observed in the proximal analysis of plantain flour. A gradual increase in moisture content was attributed to the high content of crystalline structures and molecules that can be removed by drying. Water activity increased with ripening, which was attributed to the hygroscopic nature of the flours. The protein content increased, and the carbohydrate content decreased, indicating the progress of biochemical reactions. The changes in the fat content are consistent with the hydrolysis and resynthesis of lipids during the ripening process. The obtained results indicate a significant influence of the ripening stage on the physicochemical properties of flour and starch of plantain, which is associated with the occurrence of a climacteric peak on the 4th day of ripening. The hydration properties of plantain flour decreased significantly during the ripening days, consistent with the occurrence of a climacteric peak. Water holding capacity (WHC) and water binding capacity (WBC) were affected by the degree of digestion of native starch granules and protein denaturation during fruit ripening. Scanning electron microscopes (SEM) showed that during ripening the surface of the isolated starches do not suffer any significative damage. X-ray diffraction patterns were used to identify crystalline structures and to study the changes in the crystalline structures. These results showed that the starch contains orthorhombic and hexagonal nanocrystals, which play and important role and which show small structural damage during ripening reflected in a decrease in their relative crystallinity. This is the first time that these nanocrystals have been studied and considered in the ripening process. Differential scanning calorimetry was used to study the thermal transition in isolated starch. The results indicated that the gelatinization of starch corresponds to the solvation of orthorhombic and hexagonal nanocrystals, and that during ripening there is a decrease in the enthalpy reflecting some crystal structural damage. Pasting properties were studied using a Starch cell for flours and isolated starches, indicating that the pasting profile is governed by intrinsic and extrinsic factors. The resistant starch does not show significant changes at this stage of maturation. This starch is the one with the highest resistant starch content reported in the literature (38%). It was hypothesized that the resistant starch is directly related to the amount of whole starch granules, and more importantly, directly related to the number concentration of orthorhombic and hexagonal nanocrystals. Therefore, knowledge of the physicochemical and nutritional properties of plantain and flour at each stage of ripening allows better selection according to industrial applications.
Collapse
Affiliation(s)
- Olga L. Torres-Vargas
- Universidad Del Quindío, Facultad de Ciencias Agroindustriales, Grupo de Investigación en Ciencias Agroindustriales, Quindío, Armenia, Colombia
| | - Marcela Gaytan-Martinez
- Programa de Posgrado en Alimentos Del Centro de La República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de Las Campanas S/N, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico
| | - Castro-Campos Fernanda
- Programa de Posgrado en Alimentos Del Centro de La República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de Las Campanas S/N, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico
| | - Beatriz M. Millán-Malo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, C. P 76230, Mexico
| | - M.E. Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, C. P 76230, Mexico
| |
Collapse
|
6
|
de Abreu Figueiredo J, Norcino LB, do Carmo EL, Campelo PH, Botrel DA, Borges SV, de Souza SM, de Oliveira CR. Microstructured lipid microparticles containing anthocyanins: Production, characterization, storage, and resistance to the gastrointestinal tract. Food Res Int 2023; 166:112611. [PMID: 36914355 DOI: 10.1016/j.foodres.2023.112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Anthocyanins from grape peel extract have several biological properties and can act as a natural colorant and antioxidant agent. However, these compounds are susceptible to degradation by light, oxygen, temperature, and the gastrointestinal tract. Thus, this study produced microstructured lipid microparticles (MLMs) containing anthocyanins by the spray chilling technique and evaluated the particle stability. trans-free fully hydrogenated palm oil (FHPO) and palm oil (PO) were used as encapsulating materials in the ratios 90:10, 80:20, 70:30, 60:40, and 50:50, respectively. The concentration of grape peel extract was 40 % (w/w) in relation to the encapsulating materials. The microparticles were evaluated for thermal behavior by DSC, polymorphism, FTIR, size distribution and particle diameter, bulk density, tapped density, flow properties, morphology, phenolic compounds content, antioxidant capacity, and retention of anthocyanins. Furthermore, the storage stability of the microparticles was investigated at different temperatures (-18, 4, and 25 °C), and the anthocyanins retention capacity, kinetic parameters (half-life time and degradation constant rate), total color difference, and visual aspects were evaluated during 90 days of storage. The resistance of MLMs to the gastrointestinal tract was also evaluated. In general, higher FHPO concentrations increased the thermal resistance of the MLMs and both showed defined peaks of β' and β forms. The FTIR analysis showed that the MLMs preserved the original forms of their constituent materials even after atomization, with interactions between them. The increase in the PO concentration directly affected the increased mean particle diameter, agglomeration, and cohesiveness, as well as lower bulk density, tapped density, and flowability. The retention of anthocyanins in MLMs ranged from 81.5 to 61.3 % and was influenced by the particle size, with a better result observed for the treatment MLM_90:10. The same behavior was observed for the phenolic compounds content (1443.1-1247.2 mg GAE/100 g) and antioxidant capacity (1739.8-1660.6 mg TEAC/100 g). During the storage, MLMs made with FHPO to PO ratios of 80:20, 70:30, and 60:40 showed the highest stability for anthocyanin retention and color changes at the three temperatures (- 18 °C, 4 °C, and 25 °C). The gastrointestinal simulation in vitro revealed that all treatments were resistant to gastric phase and maintained a maximum and controlled release in the intestinal phase, demonstrating that FHPO together with PO are effective to protect anthocyanins during gastric digestion, and can improve the bioavailability of this compound in the human organism. Thus, the spray chilling technique may be a promising alternative for the production of anthocyanins-loaded microstructured lipid microparticles with functional properties for various technological applications.
Collapse
Affiliation(s)
- Jayne de Abreu Figueiredo
- Departament of Food Science, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil.
| | - Laís Bruno Norcino
- Biomaterial Engineering, Federal University of Lavras, P.O. Box, 37200-900 Lavras, MG, Brazil
| | - Eloá Lourenço do Carmo
- Departament of Food Science, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | - Pedro Henrique Campelo
- Faculty of Agrarian Science, Federal University of Amazonas, 69077-000 Manaus, AM, Brazil
| | - Diego Alvarenga Botrel
- Departament of Food Science, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | - Soraia Vilela Borges
- Departament of Food Science, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | | | | |
Collapse
|
7
|
Dominguez-Ayala JE, Ayala-Ayala MT, Velazquez G, Espinosa-Arbeláez DG, Mendez-Montealvo G. Crystal structure changes of native and retrograded starches modified by high hydrostatic pressure: Physical dual modification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Rostamabadi H, Rohit T, Karaca AC, Nowacka M, Colussi R, Feksa Frasson S, Aaliya B, Valiyapeediyekkal Sunooj K, Falsafi SR. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Qian J, Yang H, Mo C, Chen Y, Zhao C. Preparation of porous starch from native starch by using fungal amylase and evaluation of its adsorption property on natural pharmacodynamic compounds. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Haiyan Yang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Chenghong Mo
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Yan Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Changyan Zhao
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| |
Collapse
|
11
|
Anugerah MP, Faridah DN, Afandi FA, Hunaefi D, Jayanegara A. Annealing processing technique divergently affects starch crystallinity characteristic related to resistant starch content: a literature review and meta‐analysis. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Putri Anugerah
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
| | - Didah Nur Faridah
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
- Department of Food Technology Faculty of Agricultural Technology Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University Bogor 16880 Indonesia
| | - Frendy Ahmad Afandi
- Deputy Ministry for Food and Agribusiness Coordinating Ministry for Economic Affairs Republic of Indonesia Jakarta 10710 Indonesia
| | - Dase Hunaefi
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology Faculty of Animal Science IPB University Bogor 16680 Indonesia
| |
Collapse
|
12
|
Carvalho APMG, Barros DR, da Silva LS, Sanches EA, Pinto CDC, de Souza SM, Clerici MTPS, Rodrigues S, Fernandes FAN, Campelo PH. Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. Int J Biol Macromol 2021; 182:1618-1627. [PMID: 34052266 DOI: 10.1016/j.ijbiomac.2021.05.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The goal of this paper was to evaluate the influence of a range of plasma generation voltages on the physicochemical, structural, and technological properties of Aria (Goeppertia allouia) starch. Untreated (0 kV) and high voltages of cold plasma generation (7, 10, 14, and 20 kV) treated samples were evaluated according to their amylose content, pH, groups carbonyl/carboxyl, molecular size distribution, structure and technological properties (empirical viscosity, hydration properties, thermal analysis and gel strength). The applied voltage of 14 kV resulted in the greatest depolymerization of the starch chains, while 20 kV allowed the formation of oxidized complexes, promoting crosslinking of the starches chain. The cold plasma technique did not affect the levels of resistant starches, but increased the starch digestibility. The increased carbonyl and carboxyl groups also influenced the paste viscosity, improved hydration properties. This study suggests that the cold plasma technique can be useful in the controlled modification of starches, producing starches with different technological properties.
Collapse
Affiliation(s)
- Ana Paula Miléo Guerra Carvalho
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Domingos Rodrigues Barros
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Laiane Souza da Silva
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Camila da Costa Pinto
- Graduation Program in Material Science & Engineering (PPGCEM), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Sérgio Michielon de Souza
- Graduation Program in Material Science & Engineering (PPGCEM), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil; Department of Physics, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | | | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici Bloco 858, 60440-900 Fortaleza, Ceará, Brazil
| | - Fabiano André Narciso Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | - Pedro Henrique Campelo
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Faculty of Agrarian Science, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil.
| |
Collapse
|
13
|
Abstract
Amylose is well known to be organized helically with six glucose per turn, allowing it to form complexes with various ligands. This interaction can be affected by the type of crystalline structure present in the starch sources. This study evaluated the effect of extrusion on the crystalline structure of starch during RS5 formation. Rice and potato starches were extruded at 100 °C and 15 rpm with 5% and 10% oleic acid (OA), then the physical, thermal, paste properties, and resistant starch content (RS) were evaluated. Potato starch extruded with 10% OA showed granules embedded in a gelatinized starch matrix. The X-ray revealed that rice (orthorhombic) and potato (hexagonal) structures remain unchanged even after extrusion. Differential scanning calorimetry (DSC) evidenced the formation of type IIa amylose-lipid complexes in OA treatments, where potato extruded with 10% OA had the highest enthalpy (0.9 J/g). Moreover, the extruded potato showed the highest pasting temperature (87.19 °C), supporting the complex formation. The RS was reduced from 15.8 (isolated) to 4.14 mg/100 mg (extruded 10% OA) in rice. For potato, RS decreased from 17 to 13 mg/100 mg (isolated and extruded 10% OA). Overall, these findings suggest a tendency in potato starch (ortho-rhombic) to interact with OA during the extrusion process, promoting a crystalline lamellae growth when extruded with 10% OA; therefore, changing their properties.
Collapse
|
14
|
Rodriguez-Garcia ME, Hernandez-Landaverde MA, Delgado JM, Ramirez-Gutierrez CF, Ramirez-Cardona M, Millan-Malo BM, Londoño-Restrepo SM. Crystalline structures of the main components of starch. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Barros DR, Carvalho APMG, da Silva EO, Sampaio UM, de Souza SM, Sanches EA, de Souza Sant'Ana A, Clerici MTPS, Campelo PH. Ariá (Goeppertia allouia) Brazilian Amazon tuber as a non-conventional starch source for foods. Int J Biol Macromol 2020; 168:187-194. [PMID: 33248054 DOI: 10.1016/j.ijbiomac.2020.11.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
Ariá (Goeppertia allouia) is a tuber from the arrowroot's family widely found in the Brazilian Amazon. The tuber has a flavor similar to corn, besides high retrogradation when cooked, differing from other commercial starches. To enhance its added value, the Ariá starch was extracted to evaluate its potential as a food ingredient. The Ariá starch was compared to the commercially available corn and potato starches regarding their physicochemical, thermal, structural, and rheological properties based on the Duncan's test (p-value <0.05). The Ariá starch presented high amylose content (~38% w/w). Furthermore, the X-ray diffraction pattern confirmed its Type-C crystalline structure. The rheological properties showed that the starch gels presented high hardness and retrogradation as other studied starches. Ariá has great potential as a source of starch with low digestibility, increasing the satiety of food products.
Collapse
Affiliation(s)
- Domingos Rodrigues Barros
- Amazon Food Innovation and Biotechnology Research Group (gIBA), Federal University of Amazonas, Manaus, Amazonas 69077-00, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Ana Paula Miléo Guerra Carvalho
- Amazon Food Innovation and Biotechnology Research Group (gIBA), Federal University of Amazonas, Manaus, Amazonas 69077-00, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Erica Oliveira da Silva
- Amazon Food Innovation and Biotechnology Research Group (gIBA), Federal University of Amazonas, Manaus, Amazonas 69077-00, Brazil
| | - Ulliana Marques Sampaio
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) - Cidade Universitária Zeferino Vaz, Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | | | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL/@nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Anderson de Souza Sant'Ana
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) - Cidade Universitária Zeferino Vaz, Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) - Cidade Universitária Zeferino Vaz, Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| | - Pedro Henrique Campelo
- Amazon Food Innovation and Biotechnology Research Group (gIBA), Federal University of Amazonas, Manaus, Amazonas 69077-00, Brazil; Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP) - Cidade Universitária Zeferino Vaz, Monteiro Lobato, 80, Campinas, São Paulo, Brazil; School of Agrarian Science, Federal University of Amazonas, Manaus, Amazonas 69077-00, Brazil.
| |
Collapse
|