1
|
Moradi M, Mehrabi O, Rasoul FA, Mattie AA, Schaber F, Khandan R. Enhancing 3D Printing Copper-PLA Composite Fabrication via Fused Deposition Modeling through Statistical Process Parameter Study. MICROMACHINES 2024; 15:1082. [PMID: 39337742 PMCID: PMC11434563 DOI: 10.3390/mi15091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The rapid advancement of additive manufacturing (AM) technologies has provided new avenues for creating three-dimensional (3D) parts with intricate geometries. Fused Deposition Modeling (FDM) is a prominent technology in this domain, involving the layer-by-layer fabrication of objects by extruding a filament comprising a blend of polymer and metal powder. This study focuses on the FDM process using a filament of Copper-Polylactic Acid (Cu-PLA) composite, which capitalizes on the advantageous properties of copper (high electrical and thermal conductivity, corrosion resistance) combined with the easily processable thermoplastic PLA material. The research delves into the impact of FDM process parameters, specifically, infill percentage (IP), infill pattern (P), and layer thickness (LT) on the maximum failure load (N), percentage of elongation at break, and weight of Cu-PLA composite filament-based parts. The study employs the response surface method (RSM) with Design-Expert V11 software. The selected parameters include infill percentage at five levels (10, 20, 30, 40, and 50%), fill patterns at five levels (Grid, Triangle, Tri-Hexagonal, Cubic-Subdivision, and Lines), and layer thickness at five levels (0.1, 0.2, 0.3, 0.4, and 0.5 mm). Also, the optimal factor values were obtained. The findings highlight that layer thickness and infill percentage significantly influence the weight of the samples, with an observed increase as these parameters are raised. Additionally, an increase in layer thickness and infill percentage corresponds to a higher maximum failure load in the specimens. The peak maximum failure load (230 N) is achieved at a 0.5 mm layer thickness and Tri-Hexagonal pattern. As the infill percentage changes from 10% to 50%, the percentage of elongation at break decreases. The maximum percentage of elongation at break is attained with a 20% infill percentage, 0.2 mm layer thickness, and 0.5 Cubic-Subdivision pattern. Using a multi-objective response optimization, the layer thickness of 0.152 mm, an infill percentage of 32.909%, and a Grid infill pattern was found to be the best configuration.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Faculty of Arts, Science and Technology, University of Northampton, Northampton NN1 5PH, UK
| | - Omid Mehrabi
- Department of Mechanical Engineering, Esfarayen University of Technology, Esfarayen 96619-98195, Iran
| | - Fakhir A Rasoul
- Department of Air-Conditioning and Refrigeration Technical Engineering, College of Technical Engineering, Al-Kitab University, Kirkuk 36003, Iraq
| | - Anas Abid Mattie
- Manufacturing Technology Department, Duhok Technical Institute, Duhok Polytechnic University, Duhok 42001, Iraq
| | - Friedemann Schaber
- Faculty of Arts, Science and Technology, University of Northampton, Northampton NN1 5PH, UK
| | - Rasoul Khandan
- Faculty of Engineering and Science, University of Greenwich, Chatham ME4 4TB, UK
| |
Collapse
|
2
|
Chopra S, Pande K, Puranam P, Deshmukh AD, Bhone A, Kale R, Galande A, Mehtre B, Tagad J, Tidake S. Explication of mechanism governing atmospheric degradation of 3D-printed poly(lactic acid) (PLA) with different in-fill pattern and varying in-fill density. RSC Adv 2023; 13:7135-7152. [PMID: 36875872 PMCID: PMC9982827 DOI: 10.1039/d2ra07061h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
With the popularity of 3D-printing technology, poly(lactic acid) (PLA) has become a very good option for layer by layer printing as it is easy to handle, environment friendly, has low costs and most importantly, it is highly adaptable to different materials including carbon, nylon and some other fibres. PLA is an aliphatic poly-ester that is 100% bio-based and is bio-degradable as well. It is one of the rare bio-polymers to compete with traditional polymers in terms of performance and environmental impact. However, PLA is sensitive to water and susceptible to degradation under natural conditions of ultra-violet rays (UV), humidity, fumes, etc. There are many reports on the bio-degradation and photo-degradation of PLA which deal with the accelerated weathering test. However, the accelerated weathering test instruments lack the ability to correlate the stabilities maintained by the test with the actual occurrences during natural exposure. Thus, an attempt has been made in the present work to expose the 3D-printed PLA samples to actual atmospheric conditions of Aurangabad city (M.S.) in India. The degradation of PLA after the exposure is studied and a mechanism is elucidated. Additionally, the tensile properties of the PLA samples are evaluated to correlate the extent of degradation and the material performance. It was found that though the performance of PLA deteriorates with the exposure time, the combination of in-fill pattern and volume plays an important role on the tensile properties and the extent of degradation. It is concluded herein that with natural exposure, the degradation of PLA occurs in two stages, supported by a side reaction. Thus, this study offers a new perspective towards the life of components in actual application by exposing PLA to the natural atmosphere and evaluating its strength and structure.
Collapse
Affiliation(s)
- Swamini Chopra
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Kavita Pande
- Director, Matverse Vision Pvt. Ltd. Nagpur India
| | - Priadarshni Puranam
- Department of Mechanical Engineering, Marathwada Institute of Technology Aurangabad India
| | - Abhay D Deshmukh
- Department of Physics, Rashtrasant Tukdoji Maharaj Nagpur University Nagpur India
| | - Avinash Bhone
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Rameshwar Kale
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Abhishek Galande
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Balaji Mehtre
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Jaydeep Tagad
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| | - Shrikant Tidake
- Centre of Excellence in Materials and Metallurgy, Mechanical Engineering Department, Maharashtra Institute of Technology Aurangabad India
| |
Collapse
|
3
|
Su KH, Su CY, Shih WL, Lee FT. Improvement of the Thermal Conductivity and Mechanical Properties of 3D-Printed Polyurethane Composites by Incorporating Hydroxylated Boron Nitride Functional Fillers. MATERIALS (BASEL, SWITZERLAND) 2022; 16:356. [PMID: 36614693 PMCID: PMC9821942 DOI: 10.3390/ma16010356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Recently, the use of fused deposition modeling (FDM) in the three-dimensional (3D) printing of thermal interface materials (TIMs) has garnered increasing attention. Because fillers orient themselves along the direction of the melt flow during printing, this method could effectively enhance the thermal conductivity of existing composite materials. However, the poor compatibility and intensive aggregation of h-BN fillers in polymer composites are still detrimental to their practical application in thermally conductive materials. In this study, hydroxyl-functionalized boron nitride (OH-BN) particles were prepared by chemical modification and ultrasonic-assisted liquid-phase exfoliation to explore their impact on the surface compatibility, mechanical properties and the final anisotropic thermal conductivity of thermoplastic polyurethane (TPU) composites fabricated by FDM printing. The results show that the surface-functionalized OH-BN fillers are homogeneously dispersed in the TPU matrix via hydrogen bonding interactions, which improve the interfacial adhesion between the filler and matrix. For the same concentration of loaded filler, the OH-BN/TPU composites exhibit better mechanical properties and thermal conductivities than composites incorporating non-modified h-BN. These composites also show higher heat conduction along the stand-vertical direction, while simultaneously exhibiting a low dielectric constant and dielectric loss. This work therefore provides a possible strategy for the fabrication of thermal management polymers using 3D-printing methods.
Collapse
Affiliation(s)
- Kai-Han Su
- Institute of Mechatronic Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Institute of Physics, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Cherng-Yuh Su
- Institute of Mechatronic Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
- Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| | - Wei-Ling Shih
- Institute of Mechatronic Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| | - Fang-Ting Lee
- Institute of Mechatronic Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| |
Collapse
|
4
|
Progress of Polymer-Based Thermally Conductive Materials by Fused Filament Fabrication: A Comprehensive Review. Polymers (Basel) 2022; 14:polym14204297. [PMID: 36297876 PMCID: PMC9608148 DOI: 10.3390/polym14204297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
With the miniaturization and integration of electronic products, the heat dissipation efficiency of electronic equipment needs to be further improved. Notably, polymer materials are a choice for electronic equipment matrices because of their advantages of low cost and wide application availability. However, the thermal conductivity of polymers is insufficient to meet heat dissipation requirements, and their improvements remain challenging. For decades, as an efficient manufacturing technology, additive manufacturing has gradually attracted public attention, and researchers have also used this technology to produce new thermally conductive polymer materials. Here, we review the recent research progress of different 3D printing technologies in heat conduction and the thermal conduction mechanism of polymer matrix composites. Based on the classification of fillers, the research progress of thermally conductive materials prepared by fused filament fabrication (FFF) is discussed. It analyzes the internal relationship between FFF process parameters and the thermal conductivity of polymer matrix composites. Finally, this study summarizes the application and future development direction of thermally conductive composites by FFF.
Collapse
|
5
|
Orellana-Barrasa J, Ferrández-Montero A, Ferrari B, Pastor JY. Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers (Basel) 2022; 14:polym14163361. [PMID: 36015618 PMCID: PMC9416607 DOI: 10.3390/polym14163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The physical ageing of polylactic acid (PLA) is a phenomenon that changes the material’s properties over time. This ageing process is highly dependent on ambient variables, such as temperature and humidity. For PLA, the ageing is noticeable even at room temperatures, a process commonly referred to as natural ageing. Stopping the ageing by freezing the material can be helpful to preserve the properties of the PLA and stabilise it at any time during its storage until it is required for testing. However, it is essential to demonstrate that the PLA’s mechanical properties are not degraded after defrosting the samples. Four different methods for stopping the ageing (anti-ageing processes) are analysed in this paper—all based on freezing and defrosting the PLA samples. We determine the temperature and ambient water vapor influence during the freezing and defrosting process using desiccant and zip bags. The material form selected is PLA filaments (no bulk material or scaffold structures) printed at 190 °C with diameters between 400 and 550 µm and frozen at −24 °C in the presence or absence of a desiccant. The impact of the anti-ageing processes on PLA’s ageing and mechanical integrity is studied regarding the thermal, mechanical and fractographical properties. In conclusion, an anti-ageing process is defined to successfully stop the natural ageing of the PLA for an indefinite length of time. This process does not affect the mechanical properties or the structural integrity of the PLA. As a result, large quantities of this material can be produced in a single batch and be safely stored to be later characterised under the same manufacturing and ageing conditions, which is currently a limiting factor from an experimental point of view as polymeric filament properties can show significant variety from batch to batch.
Collapse
Affiliation(s)
- Jaime Orellana-Barrasa
- Centro de Investigación en Materiales Estructurales (CIME), Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence:
| | | | - Begoña Ferrari
- Instituto de Cerámica y Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - José Ygnacio Pastor
- Centro de Investigación en Materiales Estructurales (CIME), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Orellana Barrasa J, Ferrández-Montero A, Ferrari B, Pastor JY. Characterisation and Modelling of PLA Filaments and Evolution with Time. Polymers (Basel) 2021; 13:polym13172899. [PMID: 34502939 PMCID: PMC8434208 DOI: 10.3390/polym13172899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
The properties of polylactic acid (PLA) filaments have not yet been analysed in detail, and they are strongly affected by the extrusion process used in some additive manufacturing systems. Here we present the mechanical, thermal, physical, and fractographical properties of an extruded filament (not the bulk material or scaffolds), the basic building block of any PLA structure printed via material extrusion. This research aims to create a reference point for the modelisation of additively manufactured structures via extrusion processes, as the main building block is characterised in detail for a deep understanding. Furthermore, we investigated the natural ageing (up to one year), the effect of the printing (extruding) temperature (180 and 190 °C), and the effect of the crosshead speed during the tensile tests (10−1 to 102 mm/min) to provide a deeper analysis of the material. The results showed that the material extruded at 190 °C performed better than the material extruded at 180 °C. However, after one hundred days of natural ageing, both materials behaved similarly. This was related to the flow-induced molecular orientation during the extrusion. The crosshead rate produced a logarithmic increase of the mechanical properties, consistent with the Eyring model. Additionally, the ageing produced significant changes in both the elastic modulus and the yield strength: from 2.4 GPa and 40 MPa, in one-day-aged samples, up to 4 GPa and 62 MPa once entirely aged. Finally, it was observed that the glass transition and the enthalpic relaxation increased with ageing, agreeing with the Kohlraushch–William–Watts model.
Collapse
Affiliation(s)
- Jaime Orellana Barrasa
- Departamento de Ciencia de Materiales-CIME, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Correspondence:
| | - Ana Ferrández-Montero
- Instituto de Cerámicay Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (A.F.-M.); (B.F.)
- Laboratory of Physicochemistry of Polymers and Interfaces (LPPI), CY Cergy Paris University, Neuville-sur-Oise, 95031 Cergy, France
| | - Begoña Ferrari
- Instituto de Cerámicay Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (A.F.-M.); (B.F.)
| | - José Ygnacio Pastor
- Departamento de Ciencia de Materiales-CIME, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
7
|
Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling. Polymers (Basel) 2021; 13:polym13142387. [PMID: 34301144 PMCID: PMC8309656 DOI: 10.3390/polym13142387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
In order to optimize the efficiency of the Fused deposition modeling (FDM) process, this study used polylactic acid (PLA) material under different parameters (the printing angle and the raster angle) to fabricate specimens and to explore its tensile properties. The effect of the ultraviolet (UV) curing process on PLA materials was also investigated. The results showed that the printing and raster angles have a high impact on the tensile properties of PLA materials. The UV curing process enhanced the brittleness and reduced the elongation of PLA material. Different effects were observed on tensile strength and modulus of specimens printed with different parameters after UV curing. The above results will be a great help for researchers who are working to achieve sustainability of PLA materials and FDM technology.
Collapse
|
8
|
Singh B, Kumar R, Chohan JS, Singh S, Pruncu CI, Scutaru ML, Muntean R. Investigations on Melt Flow Rate and Tensile Behaviour of Single, Double and Triple-Sized Copper Reinforced Thermoplastic Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3504. [PMID: 34201711 PMCID: PMC8269551 DOI: 10.3390/ma14133504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Thermoplastic composite materials are emerging rapidly due to the flexibility of attaining customized mechanical and melt flow properties. Due to high ductility, toughness, recyclability, and thermal and electrical conductivity, there is ample scope of using copper particles in thermoplastics for 3d printing applications. In the present study, an attempt was made to investigate the Melt Flow Index (MFI), tensile strength, and electrical and thermal conductivity of nylon 6 and ABS (acrylonitrile butadiene styrene) thermoplastics reinforced with copper particles. Thus, the experiments were conducted by adding different-sized copper particles (100 mesh, 200 mesh, and 400 mesh) in variable compositions (0% to 10%) to ABS and nylon 6 matrix. The impact of single, double, and triple particle-sized copper particles on MFI was experimentally investigated followed by FTIR and SEM analysis. Also, the tensile, electrical, and thermal conductivity testing were done on filament made by different compositions. In general, higher fluidity and mechanical strength were obtained while using smaller particles even with higher concentrations (up to 8%) due to improved bonding strength and adhesion between the molecular chains. Moreover, thermal and electrical conductivity was improved with an increase in concentration of copper particles.
Collapse
Affiliation(s)
- Balwant Singh
- Department of Mechanical Engineering, Chandigarh University, Mohali 140413, India; (B.S.); (R.K.); (J.S.C.)
| | - Raman Kumar
- Department of Mechanical Engineering, Chandigarh University, Mohali 140413, India; (B.S.); (R.K.); (J.S.C.)
| | - Jasgurpreet Singh Chohan
- Department of Mechanical Engineering, Chandigarh University, Mohali 140413, India; (B.S.); (R.K.); (J.S.C.)
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Catalin Iulian Pruncu
- Design, Manufacturing and Engineering Management, University of Strathclyde, Glasgow G4 0LN, UK
| | - Maria Luminita Scutaru
- Department of Mechanical Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Radu Muntean
- Department of Civil Engineering, Transilvania University of Brasov, 500036 Brasov, Romania;
| |
Collapse
|