1
|
Yu T, Wang T, Fu J, Gao X, Wang Y, Guo W, Li R, Chang G. A novel DES-enhanced sodium alginate-based conductive organohydrogel fiber for high-performance wearable sensors. Int J Biol Macromol 2025; 301:140410. [PMID: 39880267 DOI: 10.1016/j.ijbiomac.2025.140410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material. By incorporating a deep eutectic solvent (DES) composed of choline chloride and glycerol into the SA matrix through wet spinning, the mechanical properties of the hydrogel were significantly enhanced, achieving an elongation at break of 817 % and a tensile strength of 5.12 MPa. The resulting fibers exhibit stable electrical conductivity and outstanding performance as wearable sensors, enabling accurate and reliable real-time monitoring of diverse human activities. This innovative approach highlights the potential of SA-based conductive hydrogels for multifunctional sensing applications. By addressing the limitations of traditional hydrogels and leveraging the biocompatibility and scalability of SA, this method opens new avenues for advanced wearable electronics and biomedical devices that are sustainable, durable, and versatile.
Collapse
Affiliation(s)
- Tong Yu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Tiantian Wang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Jiayi Fu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Xianwu Gao
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Yuhang Wang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Weihua Guo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Ruoxin Li
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China.
| | - Guangtao Chang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Liu Y, Fu S, Jin K, Cheng Y, Li Y, Zhao Y, Liu R, Tian Y. Advances in polysaccharide-based conductive hydrogel for flexible electronics. Carbohydr Polym 2025; 348:122836. [PMID: 39562110 DOI: 10.1016/j.carbpol.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
Polysaccharides, being the most abundant natural polymers, play a pivotal role in the development of hydrogel materials. Polysaccharide-based conductive hydrogels have found extensive applications in flexible electronics due to their excellent conductivity and biocompatibility. This review highlights recent advancements in this area, starting with an overview of polysaccharide materials such as chitosan, cellulose, starch, cyclodextrin, alginate, hyaluronic acid, and agarose. It then explores different classifications of conductive hydrogels: ionic conductive, electronic conductive, and ionic-electronic composite types. The review also covers key characteristics of these hydrogels, including mechanical properties, self-healing, adhesion, structural color, antibacterial, responsiveness, biocompatibility and anti-swelling. Representative applications, such as flexible sensors, triboelectric nanogenerators, supercapacitors, and flexible electronic wound dressings, are summarized. Finally, the review addresses current challenges and provides guidance for future research, aiming to advance the field of polysaccharide-based conductive hydrogels in flexible electronics.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Intelligent Medical Engineering, College of Life and Health Management, Shenyang City University, Shenyang 110112, China
| | - Simian Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yugui Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yiqi Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yunjun Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China.
| |
Collapse
|
3
|
Xu Q, Su W, Huang C, Zhong H, Huo L, Cai J, Li P. Multifunctional Polysaccharide Self-Healing Wound Dressing: NIR-Responsive Carboxymethyl Chitosan / Quercetin Hydrogel. Adv Healthc Mater 2025; 14:e2403267. [PMID: 39551981 DOI: 10.1002/adhm.202403267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Indexed: 11/19/2024]
Abstract
As the misuse of antibiotics increases bacterial resistance, the treatment of infected wounds caused by bacteria encounters significant challenges. Conventional antimicrobial dressings often fall short in their ability to inhibit bacterial infections while simultaneously promoting wound healing. To address this issue, a polysaccharide self-healing hydrogel (CPP@PDA/Que3) wound dressing is successfully developed by incorporating quercetin and polydopamine nanoparticles into a carboxymethyl chitosan matrix. The dressing can be easily injected locally to create a protective barrier over the wound, effectively stopping bleeding and rapidly inhibiting inflammation. Furthermore, the CPP@PDA/Que3 hydrogel exhibits remarkable antioxidant and antibacterial properties, stemming from the combination of quercetin and near-infrared (NIR) photothermal therapy. It demonstrates the ability to eliminate 99.52% of Staphylococcus aureus and 99.39% of Escherichia coli in in vitro antibacterial experiments. Additionally, the in vivo wound healing experiment shows a healing rate of ≈97%. The experimental results indicate that under NIR laser (808 nm) irradiation, the polysaccharide-based hydrogel dressing significantly inhibits bacterial growth, reduces oxidative stress, expedites angiogenesis, and thereby accelerates the transition from inflammation to wound healing. In summary, the CPP@PDA/Que3 hydrogel exhibits significant potential as a wound dressing, providing a novel approach for clinically advancing the treatment of bacterial wounds.
Collapse
Affiliation(s)
- Qiuting Xu
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Cuilan Huang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Haiyi Zhong
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Lini Huo
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Jinyun Cai
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| |
Collapse
|
4
|
Darwish A, El-Sayed NS, Al Kiey SA, Kamel S, Turky G. Polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly (AM-co-ECA-co-AMPS): Broadband dielectric spectroscopy investigations. Int J Biol Macromol 2023; 232:123443. [PMID: 36709806 DOI: 10.1016/j.ijbiomac.2023.123443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
In this study, the dielectric behavior of polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly(AM-co-ECA-co-AMPS) was investigated by broadband dielectric spectroscopy (BDS). The dielectric spectra obtained from -70 to 70 °C showed a superposition of three distinctive processes, electrode polarization, charge carrier's transport, and a molecular relaxation process. These dynamic processes were further analyzed along with the effect of both temperature and reduced graphene oxide (rGO) content. The development of a clear electrochemical double layer (ECDL) at the electrode/hydrogel interface strongly supports its possible application in supercapacitors' forms of energy storage. TGA, DSC, rheology, and electrochemical properties were studied. Furthermore, when the composite hydrogel with rGO content of 2.5 % was assembled into a symmetric supercapacitor, it displayed a specific capacitance of 756 F.g-1 at 1 A.g-1 and 704 F.g-1 after 5000 cycles with high capacitance retention of 93.2 %. The superior conductivity and porous structure of the rGO composite hydrogel are credited with the hydrogel's excellent electrochemical capabilities.
Collapse
Affiliation(s)
- Abdelfattah Darwish
- Microwave Physics and Dielectrics Department, National Research Centre, 12622, Egypt.
| | | | - Sherief A Al Kiey
- Physical Chemistry Department, National Research Centre, 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 12622, Egypt
| | - Gamal Turky
- Microwave Physics and Dielectrics Department, National Research Centre, 12622, Egypt.
| |
Collapse
|
5
|
Fu C, Liang L, Zhong H, Shan W, Liu P, Bui TQ. High stretchable and self-adhesive dual networks ionic gels and flexible devices application. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Chen X, Zhang H, Cui J, Wang Y, Li M, Zhang J, Wang C, Liu Z, Wei Q. Enhancing Conductivity and Self-Healing Properties of PVA/GEL/OSA Composite Hydrogels by GO/SWNTs for Electronic Skin. Gels 2023; 9:gels9020155. [PMID: 36826325 PMCID: PMC9956163 DOI: 10.3390/gels9020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The use of flexible, self-healing conductive hydrogels as a type of typical electronic skin with the function of transmitting sensory signals has attracted wide attention in the field of biomaterials. In this study, composite hydrogels based on polyvinyl alcohol (PVA), gelatin (GEL), oxidized sodium alginate (OSA), graphene oxide (GO), and single-walled carbon nanotubes (SWNTs) were successfully prepared. The hydrogen and imine bonding of the composite hydrogels gives them excellent self-healing properties. Their self-healing properties restore 68% of their breaking strength and over 95% of their electrical conductivity. The addition of GO and SWNTs enables the PGO-GS hydrogels to achieve a compressive modulus and conductivity of 42.2 kPa and 29.6 mS/m, which is 8.2 times and 1.5 times that of pure PGO, respectively. Furthermore, the PGO-GS hydrogels can produce profound feedback signals in response to deformation caused by external forces and human movements such as finger flexion and speech. In addition, the PGO-GS hydrogels exhibit superior biocompatibility compared to PGO. All of these results indicate that the PGO-GS hydrogels have great potential with respect to future applications in the field of electronic skin.
Collapse
Affiliation(s)
- Xiaohu Chen
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haonan Zhang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiashu Cui
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (Y.W.); (Q.W.); Tel./Fax: +86-029-88493232 (Y.W.)
| | - Mingyang Li
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Juan Zhang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Changgeng Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhisheng Liu
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (Y.W.); (Q.W.); Tel./Fax: +86-029-88493232 (Y.W.)
| |
Collapse
|
7
|
An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair. Carbohydr Polym 2023; 300:120243. [PMID: 36372478 DOI: 10.1016/j.carbpol.2022.120243] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Biomedical materials are in high demand for transplantation in cases of diseased or damaged bone tissue. Hydrogels are potential candidates for bone defect repair; however, traditional hydrogels lack the necessary strength and multiple functions. Herein, we effectively synthesized a cellulose nanofiber (CNF)-reinforced oxidized alginate (OSA)/gelatin (Gel) semi-interpenetrating network hydrogel through a facile one-step approach without a cross-linker by using the synergistic effects of dynamic imine bonds and hydrogen bonds. The OSA/Gel/CNF sample showed a notable compressive modulus (up to 361.3 KPa). The gelation time (~150 s) ensured excellent injectability. Self-healing exhibited a high efficiency of up to 92 %, which would enable minimally invasive, dynamic adjustments and personalized therapies. Furthermore, the OSA/Gel/CNF hydrogel showed excellent biomineralization (Ca/P ratio ~ 1.69) and enhanced preosteoblast cell (MC3T3-E1) viability (over 96 %), proliferation, and osteogenic differentiation. Thus, this multifunctional hydrogel has promising potential for using in the bone tissue repairs.
Collapse
|
8
|
Shi T, Xie Z, Mo X, Shi W, Qiu H, Lan G, Yucheng L. Adsorption behaviors of heavy metal ions by different hydrazone-modified sodium alginate in aqueous medium: Experimental and DFT studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Preparation of novel polymethacryloyl hydrazone modified sodium alginate porous adsorbent with good stability and selective adsorption capacity towards metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Qu M, Fang J, Mu C, Li Y, Huang S, Han L, Hiemer S, Xu W, Qin Y. A novel study on the sandwich‐structure strain sensor using ethylene‐vinyl acetate‐based hot‐melt adhesive mesh web: Fabrication, properties, and modeling. J Appl Polym Sci 2022. [DOI: 10.1002/app.53209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muchao Qu
- School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangdong People's Republic of China
| | - Jiaqiang Fang
- School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangdong People's Republic of China
| | - Chenzhong Mu
- State Key Laboratory of Special Functional Waterproof Materials Beijing Oriental Yuhong Waterproof Technology Co., Ltd. Beijing China
| | - Yanfeng Li
- School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangdong People's Republic of China
| | - Shaojuan Huang
- School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangdong People's Republic of China
| | - Lei Han
- School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangdong People's Republic of China
| | - Stefan Hiemer
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Institute of Materials Simulation, Department of Materials Science and Engineering Fürth Germany
| | - Wei Xu
- School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangdong People's Republic of China
| | - Yijing Qin
- Center for Engineering Materials and Reliability Guangzhou HKUST Fok Ying Tung Research Institute Guangzhou China
| |
Collapse
|
12
|
Xu L, Zhao K, Miao J, Yang Z, Li Z, Zhao L, Su H, Lin L, Hu Y. High-strength and anti-bacterial BSA/carboxymethyl chitosan/silver nanoparticles/calcium alginate composite hydrogel membrane for efficient dye/salt separation. Int J Biol Macromol 2022; 220:267-279. [PMID: 35985394 DOI: 10.1016/j.ijbiomac.2022.08.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
In order to solve the problems of poor mechanical property, non-antibacterial and low flux of calcium alginate (CaAlg) membrane, silver nanoparticles (AgNPs) were synthesized with bovine serum albumin (BSA) and carboxymethyl chitosan (CMCS) for improving CaAlg membrane in this paper. Meanwhile, the dispersion property of silver nanoparticles and the mechanical property, thermal stability, antibacterial property and filtration efficiency of the composite membrane were explored. The results illustrated CMCS observably strengthened the mechanical property and thermal stability of the composite membrane, and AgNPs endowed the composite membrane with excellent antibacterial property. The flux of the BSA/CMCS/AgNPs/CaAlg composite membrane was raised compared to CaAlg membrane. Finally, the viscose fiber/polyethylene terephthalate fiber (VF-PET) nonwoven fabric was introduced as the support layer to further improve the filtration flux and mechanical property of the composite membrane. VF-PET/BSA/CMCS/AgNPs/CaAlg membrane had a rejection rate of over 99.0 % for dye molecules and <9.0 % for salt ions, while the flux maintained 38.5 L·m-2·h-1. Furthermore, VF-PET/BSA/CMCS/AgNPs/CaAlg membrane also had excellent separation effect on actual dye wastewater. The separation of dye and salt by the membrane mainly depended on the screening mechanism of membrane pore size, rather than adsorption. The composite membrane had an outstanding performance on the separation of dye molecules and inorganic salt ions.
Collapse
Affiliation(s)
- Lijing Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Junping Miao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Zhenhao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Zhiwei Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Lei Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Hongxian Su
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
13
|
Liu Y, Mao J, Guo Z, Hu Y, Wang S. Polyvinyl alcohol/carboxymethyl chitosan hydrogel loaded with silver nanoparticles exhibited antibacterial and self-healing properties. Int J Biol Macromol 2022; 220:211-222. [PMID: 35970368 DOI: 10.1016/j.ijbiomac.2022.08.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/23/2023]
Abstract
Hydrogel materials are gradually increasing research in biological aspects due to their unique properties. In order to prepare hydrogels with the potential to be used in clinical wound therapy, the authors prepared a bifunctional hydrogel with antibacterial and self-healing properties. The hydrogel was composed of borax cross-linked polyvinyl alcohol (PVA) and carboxymethyl chitosan (CMCS), which realizes self-healing between polymers through hydrogen bonds and borate ester bonds. The double cross-linking of hydrogen bonds and borate ester bonds also endows the hydrogel with better mechanical properties (toughness and tensile stress can reach 22.30 MJ/m3 and 70.35 KPa, respectively). On this basis, adding highly stable silver nanoparticles (AgNPs) to the hydrogel can effectively inhibit the growth of E. coli and S. aureus. This idea provides the possibility for the application of hydrogels in the process of biological wound healing.
Collapse
Affiliation(s)
- Yalei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jie Mao
- Department of Basic, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China.
| |
Collapse
|
14
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|
15
|
Construction of a dual-drug delivery system based on oxidized alginate and carboxymethyl chitosan for chemo-photothermal synergistic therapy of osteosarcoma. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Shi T, Xie Z, Mo X, Feng Y, Peng T, Song D. Highly Efficient Adsorption of Heavy Metals and Cationic Dyes by Smart Functionalized Sodium Alginate Hydrogels. Gels 2022; 8:gels8060343. [PMID: 35735687 PMCID: PMC9222840 DOI: 10.3390/gels8060343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, functionalized sodium alginate hydrogel (FSAH) was prepared to efficiently adsorb heavy metals and dyes. Hydrazide-functionalized sodium alginate (SA) prepared hydrazone groups to selectively capture heavy metals (Pb2+, Cd2+, and Cu2+), and another functional group (dopamine grafting), serves as sites for adsorption methylene blue (MB), malachite green (MG), crystal violet (CV). Thermodynamic parameters of adsorption indicated that the adsorption process is endothermic and spontaneous. The heavy metals adsorption by FSAH was physical adsorption mainly due to ΔHθ < 40 kJ/mol, and the adsorption of cationic dyes fitted with the Langmuir models, which indicated that the monolayer adsorption is dominated by hydrogen bonds, electrostatic interactions, and π-π interactions. Moreover, the adsorption efficiency maintained above 70% after five adsorption-desorption cycles. To sum up, FSAH has great application prospect.
Collapse
Affiliation(s)
- Tianzhu Shi
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (Y.F.); (T.P.); (D.S.)
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China;
- Correspondence: ; Tel.: +86-185-8642-0308
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China;
| | - Xinliang Mo
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (Y.F.); (T.P.); (D.S.)
| | - Yulong Feng
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (Y.F.); (T.P.); (D.S.)
| | - Tao Peng
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (Y.F.); (T.P.); (D.S.)
| | - Dandan Song
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (Y.F.); (T.P.); (D.S.)
| |
Collapse
|
17
|
Shi T, Xie Z, Zhu Z, Shi W, Liu Y, Liu M. Highly efficient and selective adsorption of heavy metal ions by hydrazide-modified sodium alginate. Carbohydr Polym 2022; 276:118797. [PMID: 34823803 DOI: 10.1016/j.carbpol.2021.118797] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
In the present study, a new potential adsorbent for the separation and removal of heavy metal ions was prepared using hydrazide modification. Characterization of structural and chemical properties of the absorbent indicated the dialdehyde sodium alginate (DSA) grafted adipic acid dihydrazide (AAD) plays a crucial role. The adsorption process correlated well with Freundlich isotherm and pseudo-second-order kinetics models. Additionally, the adsorption capacities for Hg2+, Pb2+, Cd2+, and Cu2+ were 7.833, 2.036, 4.766, and 3.937 mmol g-1, respectively. The thermodynamic parameter for the sorption demonstrated the process is endothermic and spontaneous. FT-IR and XPS analysis revealed the combination of chelation interactions and ion exchange between nitrogen, oxygen atoms and heavy metal ions. Moreover, after 10 times adsorption-desorption recycles, the adsorption efficiency of the adsorbent was slightly decreased. In conclusion, the as-prepared adsorbent has great potential in practical water pollution purification.
Collapse
Affiliation(s)
- Tianzhu Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou 564500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Zhu Zhu
- Inspection Department, Guizhou Provincial Institute for Quality Inspection and Testing of Liquor Products, Renhuai, Guizhou 564500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yucheng Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Minyao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| |
Collapse
|
18
|
Shi T, Xie Z, Zhu Z, Shi W, Liu Y, Liu M, Mo X. Effective removal of metal ions and cationic dyes from aqueous solution using different hydrazine-dopamine modified sodium alginate. Int J Biol Macromol 2022; 195:317-328. [PMID: 34914908 DOI: 10.1016/j.ijbiomac.2021.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
In this paper, DSA-AAD-DA and DSA-TPDH-DA were prepared to effectively remove metal ions and cationic dyes from aqueous solution. The hydrazone structure was prepared by hydrazide-modified SA which captured metal ions selectively, and the remaining functional groups were used as active adsorption sites for cationic dyes. The thermodynamic parameter for the sorption demonstrated the process is endothermic and spontaneous. In single process, the adsorption of metal ions by DSA-AAD-DA and DSA-TPDH-DA correlated well with the Freundlich model through the hydrazone structure coordination and ion exchange which was mainly chemical adsorption, and cationic dyes adsorption correlated well with the Langmuir model which was shown monolayer adsorption was dominant by hydrogen bonding, electrostatic interaction, and π-π interaction. In binary system, the mixed adsorption shown significant antagonism effect in high concentration, but cationic dyes and metal ions in low concentration were efficiently and simultaneously removed, the adsorption ability of DSA-TPDH-DA was much better than DSA-AAD-DA. Moreover, adsorption efficiency can still maintain more than 80% after five times adsorption-desorption recycle. Therefore, DSA-AAD-DA and DSA-TPDH-DA possessed great potential for wastewater treatment.
Collapse
Affiliation(s)
- Tianzhu Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou 564500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Zhu Zhu
- Inspection Department, Guizhou Provincial Institute for Quality Inspection and Testing of Liquor Products, Renhuai, Guizhou 564500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yucheng Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Minyao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Xinliang Mo
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou 564500, China
| |
Collapse
|
19
|
Zeng R, Lu S, Qi C, Jin L, Xu J, Dong Z, Lei C. Polyacrylamide/carboxymethyl chitosan double‐network hydrogels with high conductivity and mechanical toughness for flexible sensors. J Appl Polym Sci 2021. [DOI: 10.1002/app.51993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Runpeng Zeng
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Shuxin Lu
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Chuyi Qi
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Lele Jin
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Jinbao Xu
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Zhixian Dong
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Caihong Lei
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| |
Collapse
|
20
|
He Z, Yuan W. Highly Stretchable, Adhesive Ionic Liquid-Containing Nanocomposite Hydrogel for Self-Powered Multifunctional Strain Sensors with Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53055-53066. [PMID: 34699172 DOI: 10.1021/acsami.1c14139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The demand for wearable sensors consisting of multifunctional conductive hydrogels with fatigue resistance and adhesion properties is rising. More importantly, it is necessary to improve the freezing tolerance and dehydration resistance of hydrogels to avoid performance degradation in harsh environments. Herein, a robust nanocomposite ionogel was fabricated in [EMIM][Cl] ionic liquid and clay nanosheets were used as physical cross-linkers through rapid UV polymerization. The excellent mechanical properties, repeated self-adhesion to various substrates, freezing tolerance, and anti-drying properties were integrated into the nanocomposite ionic liquid hydrogel. The addition of clay nanosheets Laponite XLG endowed the ionogel with a high stretchability of up to 1200% and a tensile strength of up to 0.14 MPa, and the ionogel could be recovered when the external force was released. Ascribing to ionic liquids, the nanocomposite ionogel displayed ionic conductivity and temperature tolerance. An ionogel battery with a 0.72 V output voltage was formed by assembling the ionogel with a layer of zinc and copper sheet on each side to realize the conversion from chemical energy to electrical energy. The maximum voltage could reach 2.8 V when the four units are combined, which could provide energy for an LED bulb and could be used as a self-powered strain sensor under harsh conditions. In this work, a multifunctional ionogel self-powered sensor is proposed, which has potential applications in the fields of electronic skin, human-machine interaction, and biosensors over a wide temperature range.
Collapse
Affiliation(s)
- Zhirui He
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, People's Republic of China
| |
Collapse
|
21
|
Distler T, Polley C, Shi F, Schneidereit D, Ashton MD, Friedrich O, Kolb JF, Hardy JG, Detsch R, Seitz H, Boccaccini AR. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. Adv Healthc Mater 2021; 10:e2001876. [PMID: 33711199 PMCID: PMC11469227 DOI: 10.1002/adhm.202001876] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Electroactive hydrogels can be used to influence cell response and maturation by electrical stimulation. However, hydrogel formulations which are 3D printable, electroactive, cytocompatible, and allow cell adhesion, remain a challenge in the design of such stimuli-responsive biomaterials for tissue engineering. Here, a combination of pyrrole with a high gelatin-content oxidized alginate-gelatin (ADA-GEL) hydrogel is reported, offering 3D-printability of hydrogel precursors to prepare cytocompatible and electrically conductive hydrogel scaffolds. By oxidation of pyrrole, electroactive polypyrrole:polystyrenesulfonate (PPy:PSS) is synthesized inside the ADA-GEL matrix. The hydrogels are assessed regarding their electrical/mechanical properties, 3D-printability, and cytocompatibility. It is possible to prepare open-porous scaffolds via bioplotting which are electrically conductive and have a higher cell seeding efficiency in scaffold depth in comparison to flat 2D hydrogels, which is confirmed via multiphoton fluorescence microscopy. The formation of an interpenetrating polypyrrole matrix in the hydrogel matrix increases the conductivity and stiffness of the hydrogels, maintaining the capacity of the gels to promote cell adhesion and proliferation. The results demonstrate that a 3D-printable ADA-GEL can be rendered conductive (ADA-GEL-PPy:PSS), and that such hydrogel formulations have promise for cell therapies, in vitro cell culture, and electrical-stimulation assisted tissue engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Institute of BiomaterialsDepartment of Material Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91058Germany
| | - Christian Polley
- Chair of MicrofluidicsDepartment of Mechanical EngineeringUniversity of RostockRostock18059Germany
| | - Fukun Shi
- Leibniz Institute for Plasma Science and Technology (INP)Greifswald17489Germany
| | - Dominik Schneidereit
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringErlangen91052Germany
| | - Mark. D. Ashton
- Department of ChemistryFaraday BuildingLancaster UniversityLancasterLancashireLA1 4YBUK
- Materials Science InstituteFaraday BuildingLancaster UniversityLancasterLancashireLA1 4YBUK
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringErlangen91052Germany
| | - Jürgen F. Kolb
- Leibniz Institute for Plasma Science and Technology (INP)Greifswald17489Germany
| | - John G. Hardy
- Department of ChemistryFaraday BuildingLancaster UniversityLancasterLancashireLA1 4YBUK
- Materials Science InstituteFaraday BuildingLancaster UniversityLancasterLancashireLA1 4YBUK
| | - Rainer Detsch
- Institute of BiomaterialsDepartment of Material Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91058Germany
| | - Hermann Seitz
- Chair of MicrofluidicsDepartment of Mechanical EngineeringUniversity of RostockRostock18059Germany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Material Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91058Germany
| |
Collapse
|