1
|
Ali B, Atif M, Perviaz M, Irshad A, Abdullah M, Mobeen MA. Catalyst-free synthesis of low-temperature thermally actuated shape memory polyurethanes with modified biobased plasticizers. RSC Adv 2022; 13:506-515. [PMID: 36605674 PMCID: PMC9769378 DOI: 10.1039/d2ra06862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Recent years have seen research into developing specific application-based materials with particular components. Bio-based polyurethanes (PUs) with self-tightening effect through shape recovery at low temperature have been designed from sesame oil-based plasticizer (HSSO). Without using a catalyst, the produced plasticizer was used to create PU samples. In contrast, orcein-based PU has been created both with and without HSSO. The prepared samples have been analyzed through instrumental as well as chemical analyses for surface chemistry, thermal stability and morphology. The gel content and water absorption capacity of HSSO based PU samples has been observed to be 99.27% and 14.94%, respectively. Shape memory study of the PU samples revealed that HSSO-based PU showed fast shape recovery at 60 °C with shape recovery rate (R r) and shape fixing rate (R f) of 94.44% and 5%, respectively, in 150 seconds, whereas at 36 °C the sample showed 85% R r in 15 minutes with 93.1196 N force and 52.78% R r without force. Low-temperature thermal actuation and high water uptake highlight the prepared samples as suitable candidates for self-tightening structures in textile and biomedical fields.
Collapse
Affiliation(s)
- Basharat Ali
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Atif
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Perviaz
- Department of Basic & Applied Chemistry, Faculty of Science & Technology, University of Central PunjabLahorePakistan
| | - Adnan Irshad
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Abdullah
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Ahmad Mobeen
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| |
Collapse
|
2
|
Matykiewicz D, Skórczewska K. Characteristics and Application of Eugenol in the Production of Epoxy and Thermosetting Resin Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4824. [PMID: 35888291 PMCID: PMC9321166 DOI: 10.3390/ma15144824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/22/2022]
Abstract
The review article presents an analysis of the properties of epoxy and thermosetting resin composites containing eugenol derivatives. Moreover, eugenol properties were characterized using thermogravimeters (TGA) and Fourier-transform infrared spectroscopy (FTIR). The aim of this work was to determine the possibility of using eugenol derivatives in polymer composites based on thermoset resins, which can be used as eco-friendly high-performance materials. Eugenol has been successfully used in the production of epoxy composites as a component of coupling agents, epoxy monomers, flame retardants, curing agents, and modifiers. In addition, it reduced the negative impact of thermoset composites on the environment and, in some cases, enabled their biodegradation. Eugenol-based silane coupling agent improved the properties of natural filler epoxy composites. Moreover, eugenol flame retardant had a positive effect on the fire resistance of the epoxy resin. In turn, eugenol glycidyl ether (GE) was used as a diluent of epoxy ester resins during the vacuum infusion process of epoxy composites with the glass fiber. Eugenol-based epoxy resin was used to make composites with carbon fiber with enhanced thermomechanical properties. Likewise, resins such as bismaleimide resin, phthalonitrile resin, and palm oil-based resin have been used for the production of composites with eugenol derivatives.
Collapse
Affiliation(s)
- Danuta Matykiewicz
- Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Lucherelli MA, Duval A, Avérous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Bakkali-Hassani C, Poutrel QA, Langenbach J, Chappuis S, Blaker JJ, Gresil M, Tournilhac F. Lipase-Catalyzed Epoxy-Acid Addition and Transesterification: from Model Molecule Studies to Network Build-Up. Biomacromolecules 2021; 22:4544-4551. [PMID: 34618426 DOI: 10.1021/acs.biomac.1c00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Commercially available lipase from Pseudomonas stutzeri (lipase TL) is investigated as a biocatalyst for the formation of an acid-epoxy chemical network. Molecular model reactions are performed by reacting 2-phenyl glycidyl ether and hexanoic acid in bulk, varying two parameters: temperature and water content. Characterizations of the formed products by 1H NMR spectroscopy and gas chromatography-mass spectrometry combined with enzymatic assays confirm that lipase TL is able to simultaneously promote acid-epoxy addition and transesterification reactions below 100 °C and solely the acid-epoxy addition after denaturation at T > 100 °C. A prototype bio-based chemical network with β-hydroxyester links was obtained using resorcinol diglycidyl ether and sebacic acid as monomers with lipase TL as catalyst. Differential scanning calorimetry, attenuated total reflection, and swelling analysis confirm gelation of the network.
Collapse
Affiliation(s)
- Camille Bakkali-Hassani
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Quentin-Arthur Poutrel
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Jakob Langenbach
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Sélène Chappuis
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Jonny J Blaker
- Bio-Active Materials Group, Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Matthieu Gresil
- i-Composites Lab, Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| |
Collapse
|
5
|
Xu W, Pan Y, Deng J, Yin L, Zheng Z, Ding X. Reprocessable and Self‐Healing Shape Memory Epoxy Resin Based on Biphenyl Mesogen and Siloxane. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Weiming Xu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Pan
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinni Deng
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lv Yin
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
| | - Zhaohui Zheng
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaobin Ding
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|